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Abstract 

 

The aim of this investigation is to do additional quality control on the EUMETSAT OSISAF and 

ESA CCI sea-ice concentration climate data records (CDRs), with emphasis on the 25 km OSI-

450 and SICCI-25 km, gridded sea ice concentration (SIC) products for the Arctic region.  This 

post-processing quality assessment is based on SIC comparisons relative to an independent SST 

product that has been vetted for quality.  The reference SST product of choice is the level 4, 5-

km OSTIA SST.  To facilitate comparisons between the SIC and SST products, both OSI-450 

and SICCI-25 have been re-gridded to the same 5 km-pixel grid of the SST product.  SIC pixels 

with corresponding SST >= 3 °C, are flagged for additional quality screening in both products.  

This set, termed the “inconsistency set,” is used to identify spurious SIC, and their sources, and 

to design quality control checks to remove these sources of error from the SIC CDRs.  It is found 

that the vast majority of spurious retrievals are located along the sea ice – open water edge, 

coastal boundaries and subpolar marginal seas. They result from uncorrected atmospheric effects 

impacting low concentration retrievals over water, land contaminated microwave retrievals along 

coastlines, and representation errors resulting from gridding/remapping data to different spatial 

resolutions.  Interpolation procedures associated with changes in grid resolution can smear the 

ice edge over neighboring pixels resulting in proportionally larger areas of underestimated 

retrievals and/or erroneous retrievals spreading over wider areas away from the coasts and into 

the open waters.  A new filter with multilevel thresholding is evaluated for its skill to eliminate 

SST-flagged spurious SICs from the inconsistency set.  The filter chain is based on multiple 

thresholds that check for conservation of the SIC-SST dependence within mixed pixels (i.e., SST 

= ƒ(SIC), maximum SST and maximum SIC), a minimum distance from land requirement to 

eliminate false/underestimated SIC retrievals due to land-spillovers, and a valid range of 

standard smearing uncertainties (SSE), as this variable was found to be the most sensitive to 

blurring edge effects introduced by interpolation incurred when remapping/regridding to finer 

spatial resolutions.  Each SIC product reports an estimated SSE for each pixel.  Evaluation of the 

SSE suggested that the OSISAF uncertainties are underestimated, requiring a more aggressive 

thresholding.  A new “energy” conservation metric, measuring the continuity between SIC and 

SST within a pixel, is proposed to evaluate the impact of the noise corrections on subsequent 

truncations of the inconsistency set after each threshold eliminated a fraction of the data.  The 

new metric appears to be highly sensitive to small changes resulting from masking out the SIC 

outliers.  According to the metric, OSI-450 SIC retrievals are strongly impacted by corrections 

addressing noise resulting from land spillovers, followed by residual atmospheric effects.  The 

reverse order is true for SICCI.  Although the filtering methodology proposed here rejected 98% 

of the initial inconsistency set, the remaining de-noised set has important contributions to the 

variability of the ice edge, with standard deviations of~ 12 – 15%.  Despite common objections 

for using an ancillary data set for independent quality assessments, a synergistic SIC – SST 

retrieval appears to be beneficial for improving the accuracy of both SIC and SST products.  

Since both products have non-complementary sources of error, this synergism can be exploited 

for mutually identifying/removing residual noise in the other product.  Moreover, SSTs for the 

de-noised SIC appear to have standard deviations ≈ 0, suggesting that they are not introducing 

trends of their own.  



 3 

1. Introduction 

 

It has been observed that, during the Arctic summer months, a fraction of sea ice concentration 

(SIC) retrievals have rather large sea surface temperature (SST) fluctuations (sometimes up to 25 

°C) when compared to an independent SST product in the same grid resolution.  It is safe to 

assume that some of these retrievals are, in fact, false SICs resulting from residual noise 

contamination.  Since SIC and SST have non-complementary sources of error in the passive 

microwave (PMW) frequencies, they can be used to identify undetected erroneous retrievals in 

the other product as long as the sources of those errors are non-correlated with the other 

product’s errors.  The goal of this investigation is two-fold: 1. to explore the utility of SST as a 

diagnostics tool to identify cases when SIC retrievals with large SSTs are true ice and when they 

are noise, and 2. to propose corrections to eliminate spurious SIC retrievals that remain 

undetected by the noise corrections implemented as part of the processing chain of the 

EUMETSAT and ESA SIC products.   

 

The retrieval algorithms of PMW sea ice concentrations are sensitive to emissivity and surface 

temperature of sea ice, atmospheric effects, melt ponds, and ice thickness among others. They 

are also prone to land contamination in the coastal areas due to the large microwave antenna 

patterns.  Large uncertainty in SIC retrievals is found in the marginal ice zone, especially during 

the summer Arctic months, due to atmospheric and wind roughness influences of open water 

areas (see for instance Ivanova et al. (2014) for a comprehensive review of accuracy and 

precision of SIC algorithms in various sea ice and atmospheric conditions and inter-comparison 

of the SIC retrieval algorithms).  Methods have been developed to minimize the impact of those 

error sources (Tonboe et al., 2016), from corrections applied to the brightness temperatures to 

account for the influence of water vapor in the atmosphere and open water roughness caused by 

wind to weather filters.  These corrections are never all-encompassing, however, as there are 

atmospheric corrections that are not feasible to implement (e.g., clouds) or their impact is small 

and therefore neglected (e.g., geolocation errors); thus, some residual error is always present 

(Tonboe et al., 2016).  In the end, residual error is included in the SIC uncertainty estimates.  

Uncertainty estimates are split into two components, algorithm error and smearing error.  The 

former component includes error sources such as residual atmospheric noise, sensor noise, and 

ice surface emissivity variability, whereas the second component accounts for footprint 

mismatch errors and smearing errors resulting from mapping the SIC to grids with finer 

resolution than the sensor channels’ resolution.  

Routine monitoring of SIC products indicate that, although the atmospheric corrections and 

weather filters have reduced the weather effect considerably, a substantial number of suspect 

data remain in the SIC products. The radiometric signature of new ice, close to open waters, is 

difficult for the algorithm to interpret, as are the melting ponds during the melting season, and 

weather effects still give spurious ice data over the open sea.  Because of the synergy between 

PMW SIC and SST retrievals, they have been used together in the past to perform quality control 

in the other product.  Fernandez et al. (1998), for instance, used SSM/I SIC to provide an 

accurate description of the ice boundary in the SST product (the 55% SIC contour as opposed to 

the isotherm for the freezing temperature of sea water, i.e., -1.8 °C), while SSTs where used to 

quality-control the SICs.  In this and other studies (Nomura, 1995), SICs with SST > 1.0 °C were 

considered false retrievals (i.e., open water pixels classified as ice), and rejected before SICs 

were assimilated into the ECMWF reanalysis project to improve the SST field.  We will use the 
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same concept to do some post-processing quality control on the EUMETSAT and ESA SIC 

products. 

 

Here, we consider the SST = 3 °C as the threshold for identifying the subset of SIC retrievals in 

potential need of extra quality assessment.  We term the extracted subset, (SIC > 0% with SST 

>= 3 °C), the “inconsistency set,” and use it as the basis to derive filters, based on physically 

realistic thresholds, to mask out spurious sea ice detections.  Maps of monthly SIC means from 

the inconsistency set (Fig. 1) indicate that inconsistencies tend occur along coastal areas, at the 

ice edge, and in marginal seas.  Also, inconsistencies appear to be more numerous in June, July, 

and August.   This is confirmed by the total counts in Tables 1(SIC) and 2 (SST) summarizing 

the monthly mean statistics for the inconsistencies shown in Fig. 1. 

 

Table 1. Monthly Statistics for the 2014 SICCI Inconsistencies 
month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

(cnt)e+4 3.10 1.14 2.77 2.76 5.34 32.61 64.56 20.93 4.87 1.14 0.85 1.94 

mean 10.05 6.32 8.51 8.90 7.75 19.26 14.65 9.56 5.99 6.16 2.97 5.29 

SD 13.17 8.34 11.31 11.29 10.49 21.58 16.82 11.47 7.67 8.29 4.03 6.36 

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25% 1.01 0.56 0.92 0.93 0.71 2.19 1.81 1.05 0.64 0.58 0.31 0.62 

50% 4.59 2.87 3.94 4.27 3.51 10.18 8.07 4.66 2.77 2.71 1.32 3.00 

75% 13.86 8.92 11.42 12.75 10.92 30.70 21.57 14.28 8.49 8.26 3.99 8.51 

max 87.65 58.30 73.98 68.75 100.0 99.83 91.99 72.61 51.76 47.08 29.89 66.91 

 

Table 2. Monthly Statistics for the OSTIA SSTs corresponding to the 2014 SICCI 

Inconsistencies 
month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

(cnt)e+4 3.10 1.14 2.77 2.76 5.34 32.61 64.56 20.93 4.87 1.14 0.85 1.94 

mean 4.11 3.63 3.93 3.97 4.56 4.14 5.98 4.41 3.90 4.80 4.82 4.73 

SD 0.84 0.49 0.70 0.73 1.69 1.59 5.51 1.88 1.01 2.11 1.85 1.20 

min 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

25% 3.38 3.23 3.34 3.36 3.39 3.26 3.29 3.25 3.26 3.33 3.23 3.71 

50% 3.96 3.53 3.79 3.83 4.04 3.65 3.75 3.64 3.60 3.82 3.91 4.49 

75% 4.67 3.96 4.40 4.44 5.12 4.33 4.80 4.64 4.14 5.60 6.26 5.63 

max 6.67 5.82 6.24 7.19 14.37 16.35 24.12 17.77 10.32 11.89 10.33 7.79 

 

Monthly maximum value composite (MVC) maps of total pixel counts for the 2014 SICCI 

inconsistencies are shown in Fig. 2 (The top panel shows the map in full color scale; the bottom 

panel shows the same map, but zooming in at smaller counts to better appreciate the structure of 

pixels reputedly flagged as containing an inconsistency).  A MVC reduces the daily 

inconsistency SIC maps to a single map in which each pixel is assigned the total number of times 

during the year it was flagged as having an inconsistent SIC retrieval.  If the location of the 

inconsistencies migrated with time, the colored regions should have spread over a wide latitude 

range, but Fig. 2 indicates that they do not appear to move much at this grid resolution (5-km 

spacing).  This seems to be in contradiction with Lavergne et al. (2019) according to which the 

position of the daily sea ice edge can fluctuate substantially within a month, hence requiring that 

the climatological masks used to delineate the monthly maximum sea ice extent within the SIC 
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CDRs be expanded to a buffer zone of 150 km in the Northern Hemisphere when choosing 

training open water areas in the SIC algorithms.  Of course, the values highlighted in Fig. 2 

indicate recurrence of inconsistencies within a pixel-size area, so the contradiction stems from 

the fact that the inconsistencies in the ice edge do not migrate with the ice edge, but remain 

quasi-stationary.  Maps of MVC of inconsistency counts suggest that the inconsitencies have 

preferred locations in terms of latitude, and are more abundant in the Hudson Bay, the south-east 

coast of Greenland, the Fram Straight, the Kara Sea and the Baltic Sea.  This is an indication that 

the SIC inconsistencies are coherent in space and time, suggesting that they are associated with 

errors that are “systematic” in nature.  In other words, they do not appear to be random at this 

point. The next step is then to identify the sources of the systematic errors causing some of the 

inconsistencies.   

 

At the heart of this issue is what constitutes a valid joint SIC-SST retrieval and what is noise.  

For that we need to answer what is the maximum SST that is physically viable within a mixed 

pixel (SIC > 0%).  We will adopt a statistical approach in which marginal probability density 

functions of SIC related parameters, as well as a joint probability density function of SIC and 

SST within the marginal ice zone, are used to define thresholds for filtering residual noise-

contaminated SIC retrievals.  In Section 2 we describe the products used in the inconsistency 

analysis.  In Section 3 we try to determine the primary sources of the errors by looking at 

individual examples of inconsistencies with specific spatial structures.  In Section 4 we narrow in 

on the variables used to screen the inconsistency set for spurious retrievals and use pdfs to try to 

identify ranges of the specified variables that can be used in thresholds to eliminate the noise.  In 

Section 5, we finalize the choice of the thresholds and evaluate the impact the different filters 

have on the inconsistency set.  A summary of findings and recommendations is given in the 

conclusions.  
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Figure 1. Monthly mean SICCI sea ice fraction inconsistencies for 2014 
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Figure 2. Map of SICCI inconsistency count for 2014.  The color of the pixels indicates how 

many times in the year individual pixels were flagged as having a SIC inconsistent with an SST. 

Top map: Full range; bottom map: pixels with less than 30 counts.  These maps indicate that the 

inconsitencies have preferred locations in terms of latitude, and are more abundant in the Hudson 

Bay, the south-east coast of Greenland, the Fram Straight between Greenland and Svalbard, the 

Kara Sea and the Baltic Sea. 
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2. Description of Data Sets 

 

2.1 Sea ice concentration products  

 

Two different SIC products have been used in this study: the European Space Agency Climate 

Change Initiative (ESA CCI) SIC product, SICCI and the EUMETSAT OSISAF SIC product, 

OSI-450 (Lavergne et al., 2019).  While both SIC products use the same algorithms and 

processing chains, they differ in spatial resolution (footprint sizes of the sensors used in the 

algorithms).  The OSISAF SIC product uses information from the coarse resolution (30 – 60 km) 

passive microwave (PM) instruments available since October 1978:  the Satellite Multichannel 

Microwave Radiometer (SMMR), the Special Sensor Microwave / Imager (SSM/I), and the 

Special Sensor Microwave Imager and Sounder (SSMIS).  The SICCI product is based on the 

medium resolution (15 – 25 km) PM sensors:  the Advanced Microwave Scanning Radiometer - 

Earth Observing System (AMSR-E; 2002-2010 on board the US Aqua satellite) and Advanced 

Microwave Scanning Radiometer 2 (AMSR2; 2012-today on board the Japanese GCOM-W1 

satellite).  Here, we used data from the version 2, SICCI-25 km and OSI-450 products for 2014.  

Both of these products are released on Equal Area Scalable Earth 2 (EASE2) grids with 25 × 25 

km resolution, but were resampled to 0.05º x 0.05º regular longitude-latitude grids to match the 

resolution of the reference SST product.  Fig. 3 shows 0.05º-resolution SIC maps above 50 ºN 

from SICCI (top-left) and OSI-450 (top-right) for 30 June 2014.  Ice concentrations are 

expressed in percentages.  Included in the products are maps of estimated uncertainties at each 

grid cell.  These uncertainties give a quantification of the remaining noise from the two 

uncertainty components: the smearing standard error (SSE), which measures the increase in 

uncertainty due to mismatching spatial dimensions and the algorithm uncertainty; the total 

standard error (TSE), which is the sum of the previous two, is also provided with the products.  

The smearing uncertainty is largest, up to 40% SIC, at the ice edge and low concentrations, near 

0% SIC, in areas where all contributing satellite footprints cover the same SIC (e.g., open water).  

It is the dominant term in the spatial domain of the inconsistencies, and thus it is used to help 

diagnose the validity of the SIC retrievals.  Maps of SSE corresponding to SICCI and OSISAF 

for 30 June 2014 are shown in the center row of Fig. 3.  A detailed description of the SIC 

products and the underlying algorithms can be found in Lavergne et al. (2019).  

2.2. Sea surface temperature product 

 

To be able to exploit the synergy between SIC and SST for additional quality control of the SIC 

products we need a high-quality SST reference.  SST analyses (level 4 products) are spatially 

complete global maps obtained from blending data from multiple platforms (microwave and 

infrared sensors, buoys, etc.) on regular global grids and using some form of interpolation to fill 

in the gaps.  In this study, we use the version 2, Operational Sea Surface Temperature and Ice 

Analysis (OSTIA) foundation SST (Donlon et al., 2012).  This is a global, daily, optimally 

interpolated analysis produced by the UK Met Office.  Although it is distributed in 0.05º x 0.05º 

resolution grids, the smallest analysis feature resolution is based on the correlation length scale 

of 10 km. A foundation SST is an estimate of the surface temperature of the ocean devoid of 

diurnal warming variability.  To minimize the influence of the diurnal cycle, the analysis merges 

nighttime data and daytime SST retrievals filtered for wind speeds > 6 m/s.  For this study, the 

SIC products, originally at 25 km resolution, were re-gridded onto the same resolution of the 

OSTIA SST, i.e. from 25 km down to 0.05º (~5 km).  This SST product is fully vetted as it is 
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used operationally as a boundary condition for all weather forecast models at the Met Office and 

at European Centre for Medium-range Weather Forecasting (ECMWF).  The product is reported 

to have zero mean bias and an accuracy of ~0.57 K compared to in situ measurements.  An 

example of this product is shown in Fig. 3, bottom-left panel for 30 June 2014. 

2.3. Distance-from-land mask 

Due to the coarse resolution of the PM sensors used, especially SMMR, SSM/I, and SSMIS, the 

brightness temperature data are influenced by land emissivity several tens of kilometers away 

from the coastline, and SIC retrievals tend to be overestimated near land.  In other cases, open 

water areas are interpreted as ice.  Even though the version 2 CDRs undergo extensive 

corrections for land effects both at level 2 (the brightness temperatures) and level 3, not all noise 

due to land contamination effects is successfully removed; hence, we use a distance-from-land 

mask to help sort out remaining SIC retrievals affected by land from the inconsistency set.  The 

distances (Fig. 3, bottom right) are provided in kilometers and mapped to a 0.05º-resolution grid.  

The mask was produced by DMI.  

2.4. SIC- and SST-derived products 

 

In addition to the SIC and SST themselves, estimates of their temporal and spatial variability 

were also considered as diagnostic tools to help with the screening of the inconsistencies.  The 

spatial variability of SIC and SST was estimated from the Sobel operator, the reasoning being 

that most of the inconsistencies are located at the ice edge, and the 3x3 convolution kernels of 

the Sobel operator respond maximally to edges, emphasizing high frequency (i.e., high 

variability) regions.  It returns the absolute gradient magnitude at each pixel.  Temporal 

variability, on the other hand, was estimated by two proxies: as the standard deviation (SD) of 

the parameters (SIC and SST) over a 3-day rolling window and, because a sample size of 3-point 

measurements might not give statistically significant SDs, as the statistical range over the same 

3-day rolling window.  This is the absolute value of the difference between the maximum and 

minimum value (i.e., |MAX – MIN|) of the variables, for each pixel, over a [-1; +1 day] rolling 

window.  As the range depends solely on two-point measurements, the maximum and the 

minimum values, it is the de facto measurement of dispersion for small data sets.  Interestingly 

enough, the spatial patterns of these two proxies for temporal variability were exactly the same, 

and they varied only in their magnitudes.  Maps of the spatial and temporal gradients for SICCI, 

OSISAF, and OSTIA for 30 June 2014 are shown in Fig. 4. 
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Figure 3. SIC products (top-left: SICCI; top-right: OSISAF) and related uncertainties (center 

row). Ancillary products: OSTIA SST (bottom-left) and Distance from land (bottom-right).  
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Figure 4.  Spatial (left) and temporal variability (right) for: top: SICCI, middle: OSISAF, bottom: 

OSTIA SST  
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3. Characterization of Inconsistencies 

 

The key questions here are: Are the inconsistencies real or are they flagging a spurious SIC 

retrieval? If the latter, how can they be filtered out? In order to propose corrections for residual 

noisy SIC retrievals we need to know first what is causing them.  In order to answer these 

questions, we look at the summer inconsistencies in more detail as shown in Figs. 5 and 6 for 

June and July, respectively, and zoom in on specific features.  Selected features were chosen 

taking into consideration geographical regions where inconsistencies seem to have preferential 

locations as indicated by the MVC of inconsistency occurrences for 2014 shown in Fig. 2.  

 

3.1. Inconsistencies due to failure of the SIC algorithm’s atmospheric correction: The 

Baltic Sea case 

 

The maps of monthly MVC of SIC inconsistencies for July (Fig. 6, top row) and August (not 

shown) reveal two distinct regions for both SICCI and OSISAF where there should not be any 

ice for that time of the year, yet the SIC is above 20 – 30%.  These are the Baltic Sea (Gulfs of 

Bothnia, Finland and Riga) and the area around the Amur river outlet into the Tatar Strait in the 

Sea of Okhotsk.  Lending support to the claim that these inconsistencies are indeed spurious SIC 

retrievals is the fact that OSTIA SSTs for the same pixel grids (Fig. 6, mid row) show SSTs in 

excess of 20 °C, consistent with sub-polar, open water, summer temperatures (see maximum 

SST for July in Table 2).  A close-up view of these inconsistencies for the Baltic Sea is shown in 

Fig. 7 for 28 July 2014.  Not only are these SICs wrong (the correct value should have been SIC 

= 0% for open water), but there is nothing in the associated uncertainties to indicate that these 

retrievals are impacted by residual noise.  In fact, the close-up views for the total errors in the 

Baltic Sea example (Fig. 7, bottom row) show that the largest errors associated with these 

retrievals, away from the coasts, are quite low (SSE < 10 – 15%) for both SICCI and OSISAF 

products.  These false ice concentrations are most likely due to uncorrected atmospheric effects. 

 

Typical corrections for atmospheric contributions to the SIC uncertainties are implemented at the 

brightness temperature (TB) level and include the use of a radiative transfer model (RTM) forced 

with numerical weather prediction (NWP) reanalysis fields (Andersen et al., 2006; Ivanova et al., 

2015; Tonboe et al., 2016; Lavergne et al., 2019).  The two atmospheric sources with the greatest 

impact to the SIC retrievals are water vapor and liquid water content (LWC), since their 

microwave signature is similar to that of sea ice.  Retrievals of LWC, however, are particularly 

challenging and current NWP LWC fields lack the accuracy required to be used in RTM-based 

microwave atmospheric corrections (e.g., Lu et al., 2018; Ivanova et al., 2015).  Hence, most SIC 

products, including the ones considered here, go uncorrected for the influence of LWC and 

cloudy atmospheres.  Confounding this issue is the fact that LWC can be retrieved in the PMW 

frequencies of 18 and 37 GHz where clouds are semi-transparent, but the OSI-450 and SICCI-25 

km CDR also use the same MW frequency space (19V, 37V, 37H).  Since the reflectivity of wet 

ice is similar to that of LWC, this can lead to erroneous classifications of open water for wet ice 

during the ice melting season if the cloud cover happens to be made of the “right type” of cloud, 

in this case dense, wet clouds.  To ameliorate deficiencies in the atmospheric correction to the 

TB, the RTM simulations are complemented with a weather filter based on the gradient ratio of 

two microwave channels selected based on their sensitive to some atmospheric influence.  The 

SIC products considered here use an “open water” weather filter (OWF) based on the 19V and 
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37V GHz channels to remove false ice (due mainly to LWC, given the sensitivity of the channels 

used) in open water: erroneous SIC are set to SIC = 0% (i.e., they are reverted to open water). 

 

PMW SSTs on the other hand are measured between 6 – 7 and 10 – 11 GHz.  The spectral 

signature of the SST at these low frequencies is quite different from the surface roughness and 

the atmosphere, making the separation of the SST signal from the atmospheric contribution more 

effective.  This is a clear example in which comparing a SIC product to a SST product is a good 

diagnostic tool for detecting spurious retrievals since their sources of error are independent and 

hence, they complement each other.  Fig. 7 indicate that spurious SICs that can be traced back to 

failings of the SIC algorithm’s atmospheric correction can be easily flagged/eliminated with a 

filter based on the maximum SST within the marginal ice zone (MIZ).  The question then 

becomes, what is the range of physical SSTs in close proximity to ice?  We aim to answer this 

question based on a joint SIC-SST distribution for the MIZ (Section 4).  

 

3.2. Inconsitencies due to gridding/interpolation effects during the SIC CDR processing 

chain: The Fram Strait case 

 

One of the most striking features of the MVC maps for June and July (Figs. 5 and 6) is the fact 

that many inconsistencies seem to closely follow the ice edge in long, narrow filaments.  

Zooming in on one of those areas for the Fram Strait on 18 July 2014 (Fig. 8), one can see that 

the SIC and the SST inconsistency criteria overlap in a narrow region of open water next to the 

ice edge, resulting in a filament-type structure that traces the SIC = 0% contour (Figs. 9 and 10, 

for SICCI and OSISAF respectively).  The diagnostic variables mapped in Fig. 8 show the SIC 

related products extending all the way to the SIC-0% contour, whereas the SST related products 

have been cut off at the 3 ºC-isotherm, since this is the lower boundary that defines the 

inconsistency set.  These two products overlap in the narrow filament shown in Figs. 9 and 10.  

Close inspection of this filament gives a good idea about its source.  As can be appreciated in the 

SIC and SST inconsistency maps (top two panels in Figs. 9 and 10), the filament displays a 

pixelated or jagged edge on its open-water side and a smooth edge on its ice side.  Moreover, in 

the SIC maps (top-left panels) the concentrations increase linearly, from 0% at the jagged edge to 

~40% at the smooth edge, whereas the SSTs (top-right panels) increase linearly, directly 

opposite from the spots on the sides with higher concentration, from 3 ºC at the smooth edge to 

~5 ºC at the jagged edge.  This is indicative of interpolation edge effects that result from 

remapping a coarse resolution pixel onto a fine resolution pixel with conventional linear 

interpolation techniques.  Interpolation edge effects affect mixed pixels where there is a sharp 

edge/transition between two surfaces and can adopt different forms such as blurring/smearing 

and blocking.  In this particular example, the SST edge (i.e., the 3 ºC-contour) is smooth because 

the level 4 (gridded and interpolated) OSTIA product is in its native 5 km-resolution grid.  The 

level 4 SIC products, however, were generated at 25 km-resolution grids and then resampled to 5 

km to be on the same grid as the SSTs.  Resampling involves interpolation, and also possibly 

extrapolation, as non-zero ice concentration values are projected into regions with open water.  

Blocking is an effect of nearest-neighbor interpolation schemes in which many subpixels in the 

zoomed image are assigned the same value of the coarser pixel.  Pixel replication at the ice edge 

gives it its blocky appearance, hence its name.  The non-zero ice concentration values are 

extended throughout the effective coarser resolution pixel, while the higher resolution SST 

products can resolve open water values within that area.  So, it appears that blocking in the 
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vicinity of the 0%-edge is most likely giving the resampled SIC its jagged appearance.  This is 

visible not only in the open water edge of the inconsistency filament, but also in all the SIC 

related products shown in Fig. 8.   

 

Clearly, inconsistencies along the ice edge are being affected by interpolation artifacts.  What is 

not so clear is when in the processing chain they were introduced.  In addition to the 

interpolation just mentioned to put the SIC and the SST products on a common grid to facilitate 

this analysis, the SIC products underwent other resampling/interpolation steps during the 

processing chain; that is, when transitioning from swath (level 2) data to gridded (level 3) data 

and when filling the gaps in the gridded data (level 4).  In addition to these interpolation steps, 

the footprint sizes of the channels use in the mapping of the ice concentrations are uneven, 

ranging from ~50 – 70 km for the 19.3 GHz to ~30 km for the 37 GHz for the SMMR, SSM/I, 

and SSMIS sensors used in OSISAF, and from ~25 × 15 km (18.7 GHz) and ~15 × 10 km (37 

GHz) for AMSR-E and AMSR2 used with SICCI.  This aspect alone introduces footprint 

mismatch errors (Tonboe et al., 2016).  Confounding this issue is the fact that the level 4 

OSISAF products are delivered in a grid finer than the sensor’s footprint resolutions (25 km vs. 

30 – 70 km), which results in blurring/smearing in the gridded OSISAF SICs.  This is evident in 

Fig. 8, where the OSISAF SICs (top-right) look smeared or blurred relative to the sharp SICCI 

concentrations (top-left).  In other words, the small-scale features apparent in SICCI are lost in 

OSISAF.  

Both SICCI and OSISAF products provide smearing uncertainties, which estimate the combined 

effect of the footprint mismatch error and the smearing error incurred when resampling to finer 

resolutions than the sensor’s footprint.  The smearing uncertainty is greatest where sharp spatial 

gradients occur, typically at the sea-ice edge.  This appears to result in a different sort of 

inconsistency here, as OSISAF inconsistencies should inherently have increased smearing 

uncertainties than SICCI’s, i.e. more representativeness error coming from sensors with a much 

larger footprint mismatch and a wider gap between sensor and the target grid resolutions.  Yet, 

the bottom two plots of Figs. 5 and 6, for the June and July SSE MVCs, show that the OSISAF 

inconsistencies have the largest SSE uncertainties constrained to a narrow distance from the 

coast (bottom right panels), whereas the SICCI uncertainties have larger SSEs spreading over 

much wider distances from the edges (bottom left panels).  In reality, the SICCI 25 km 

inconsistencies have sharper edges since they are not subject to the interpolation smearing 

inherent in OSISAF (see for instance the MVC SSE maps shown in Figs. 8 for SICCI and 

OSISAF).  Therefore, since the smearing uncertainty is larger where spatial gradients occur, 

SICCI ends up with a larger smearing uncertainty than OSISAF’s.  This can be easily explained 

from the SSE function used in the current SIC CDRs, with SSE = K x (SICmax – SICmin)3x3, i.e., 

the scalar K, whose value depends on the diameter of the field of view of the instrument channels 

used for the SIC computation and the spatial spacing of the level 4 grid, is amplified by the 

difference between the maximum and the minimum SIC in a 3x3 grid box centered on each 

pixel.  Whereas in theory KOSISAF > KSICCI, K = 1 for all EUMETSAT SIC products (Lavergne 

et al., 2018).  SSE is then reduced to the 3x3 gradient filter, hence the SSE sensitivity to sharp 

gradients near the ice edge.  Since (SICmax – SICmin)3x3 →0 for OSISAF in lieu of its smooth 

edges (not much SIC contrast), the result is SSEOSISAF < SSESICCI.  This value for OSISAF is 

likely underestimated on the fine grid.  Confounding this issue is the additional re-projection and 

interpolation performed on the level 4, 25-km SIC products to the 5 km OSTIA SST grid.  This 
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bilinear interpolation most likely blurred the SICCI uncertainty gradients across larger distances 

away from the boundaries as pixels with high intensity values relative to the surrounding 

neighborhood get smeared across the area by the interpolation.  For OSISAF, the pixel intensity 

difference relative to its neighbors is small, and thus would not be affected as much at this latter 

interpolation stage. 

Back to the filaments in Figs. 9 and 10, the discussion above explains why the OSISAF filament 

(Fig. 10, left panel) has lower SSE than SICCI’s, except in a couple of spots closer to land as 

indicated by the panel to its right, and why the SSE is larger over a wider range of SICCI 

inconsistencies near the coasts, as shown in the bottom row panels in Figs. 5 and 6.  It also 

explains why the diagnostic variable that best correlates with the SIC inconsistencies near the ice 

edge where interpolation artifacts are prominent is the smearing uncertainty (SSE) and, to a 

lesser degree for OSISAF at least, the distance from land (second row in Figs. 9 and 10).  

Interpolation artifacts at the ice edge do not necessarily mean that the SIC retrievals are incorrect 

at their native resolution.  The error arises when estimating (guessing) values at a sub-pixel 

resolution (the higher resolution SST grid) at which no real microwave information is available.  

They are cosmetic glitches in a sense, that are largely unavoidable when one encounters abrupt 

boundaries. Thus, filters based on SSE won’t entirely eliminate interpolation artifacts; they will, 

however, correct for blurring of the edges, especially with SICCI, resulting from converting all 

the products to the same resolution.  Since the OSISAF SSE in the 5-km grid is not smeared too 

far away from the coast, the distance filter should eliminate most OSISAF SIC inconsistencies 

with high SSE adjacent to land.  The full region influenced by misclassification can potentially 

be greater than that of the elevated SSE values. 

 

3.3. Inconsitencies due to residual land contamination in the MW SIC retrievals 

 

Further considering the region from the previous example, notice that in addition to the 

inconsistency feature due to gridding (the long filament in Figs. 9 and 10), the OSISAF 

inconsistency map in Fig. 10 reveals many more outliers around the coast of Svalbard that are 

not present in the SICCI map (Fig. 9).  This is also made explicit by the MVC maps for June and 

July (Figs. 5 and 6) where the OSISAF composites show a significantly greater number of 

inconsistencies along the coasts.  It is well known that in coastal areas, the emissivity of land is 

of the same order of magnitude as that of the sea ice, and both have much higher emissivity than 

the water.  This, combined with the large beam width of the microwave sensor antenna pattern, 

results in land-to-ocean spillovers in which coastal signals can be mistaken for sea ice during the 

summer months.  The severity of this impact depends on the footprint of the sensor and the 

satellite revisit time.  The SIC products evaluated here use a statistical correction (Cavalieri et 

al., 1999) to reduce land-contaminated pixels in the vicinity of coastlines during the summer 

time, but the June and July inconsistency maps for OSISAF (Figs. 5 and 6) indicate that the land 

spillover correction being used is leaving behind a significant number of spurious SIC retrievals.  

Hence, the need for a post-processing filter to mask out spurious SIC within a minimum distance 

from the shore when the MIZ extends all the way to the coastline. 

 

3.4. Inconsitencies with SIC > 80%: The Kara Sea case 

 

The monthly statistics for the SICCI inconsistencies (Table 1) indicate the presence of a small 

fraction of SICCI inconsistencies with concentrations near the 100%-ice regime for the months 
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of May, June, and July (see maximum SIC values for those months).  This suggests the presence 

of open water in pixels that appear to be simultaneously pack ice.  In other words, this is a 

conflicting SIC vs. SST combination.  The question is, are these pixels supposed to have SIC = 

100% (all ice) or are the ice concentrations being overestimated?  The latter alternative seems 

more likely as the former is not supported by the corresponding moderate SSTs.  The MVC maps 

for the June 2014 inconsistencies (Fig. 5) show that the highest concentrations are located in the 

Gulf of Ob and coastal areas of the Kara Sea.  As for the source of the errors, Tonboe et al. 

(2016) explains that land spillovers in coastal areas with intermediate ice concentrations will 

result in overestimation of the SIC retrieval, which “fits the bill” quite nicely here as pixels with 

overestimated SIC are all near land.  Since the overestimated SIC retrievals are also the result of 

land contamination, one would thing that a filter based on a minimum distance requirement as 

explained in Section 3.3 should take care of these inconsistencies.  That should be the case if the 

overestimated SIC retrievals area contained within the minimum distance requirement stipulated 

in the filter, but if they extend passed it, another filter might be needed to constrain SIC retrievals 

within the MIZ by a physically meaningful maximum SIC.  As with Section 3.1, the maximum 

concentration possible within the MIZ should come into focus with the aid of a joint SIC - SST 

distribution for the MIZ.  

 

3.5. When the inconsistencies are not inconsistent after all: The Hudson Bay case 

 

It is reasonable to expect that some SICs in the inconsistency set are valid; that is, we are open to 

the possibility that, given the scale of the footprints, a fraction of the retrievals for which the 

mean SIC > 0% and SST ≥ 3 ºC corresponds to physically meaningful conditions observed in the 

MIZ.  The Hudson Bay is an interesting case because a significant portion of the summer SIC 

retrievals inside the bay are flagged as “inconsistent” when compared to the OSTIA SST 

product.  This can be appreciated in more detail in the SICCI and OSISAF inconsistency maps 

for the Hudson Bay shown in Figs. 11 and 12 corresponding to 30 June 2014.  Data extractions, 

on the same day, for the whole set of variables used as diagnostics tools are also shown for the 

grid cells flagged in the SICCI (Fig. 11) and the OSISAF (Fig. 12) inconsistency sets.  There is 

nothing to suggest that there is something wrong with the SIC retrievals flagged by the 

inconsistency criteria.  The SIC inconsistencies from both products show an extensive marginal 

ice zone that expands from the center of the bay all the way to coast.  Different patterns are seen 

in between products with SICCI showing a well-defined ice edge along the shoreline and SICs 

increasing linearly with distance from the coast.  For the OSISAF product only the eastern shore 

of the bay shows signs of open water with intermediate to high concentrations in the rest of the 

MIZ that extend all the way to the coast, which is actually a more realistic representation of the 

typical spatial distribution of ice in the bay.  SSTs also seem quite reasonable with most values 

less than ~5 ºC, with the exception of some localized warm spots along the coast indicating river 

outlets.  If we are correct in our assumption that these are valid SIC retrievals, then they should 

prevail after all the filtering is done. 

  



 17 

 

 
Figure 5. Monthly Maximum Value Composite (MVC) for SICCI (left column) and OSISAF 

(right column) inconsistencies for June 2014. Top row: SIC, Middle row: OSTIA SST, Bottom 

row: SSE.  
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Figure 6. Monthly Maximum Value (MVC) Composite for SICCI (left column) and OSISAF 

(right column) inconsistencies for July 2014. Top row: SIC, Middle row: OSTIA SST, Bottom 

row: SSE 

 



 19 

 
Figure 7. SIC Inconsistencies on the Baltic Sea for July 28, 2014 for the SICCI (left column) and 

OSISAF (right column) products. Top row: SIC inconsistencies, middle row: OSTIA SSTs, 

bottom row: corresponding SSE. 
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Figure 8.  SIC products and related variables between Greenland and Svalbard for July 18, 2014.  

The SIC-related products are shown where the SIC > 0% and the SST-related products are 

shown where the OSTIA SST >= 3 °C.  The inconsistencies are defined at the intersection of 

these two domains along the ice edge. 
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Figure 9.  SICCI inconsistencies and corresponding parameters for the Svalbard case 
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Figure 10.  OSISAF inconsistencies and related parameters for the Svalbard case  
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Figure 11. SICCI inconsistencies and related parameters for the Hudson Bay case  
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Figure 12. OSISAF inconsistencies and related parameters for the Hudson Bay case 
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4. Filter Determination 

 

4.1 Filters to reduce spurious SIC inconsistencies resulting from land spillovers and 

interpolation/gridding effects  

 

Visual inspection of the maps of inconsistencies illustrated in the examples of Section 3 suggests 

that, in addition to the SST, the other two parameters that might be able to help filter out spurious 

SIC retrievals in both SICCI and OSISAF products are the SSE and the distance from land.  This 

is further supported by their probability density functions (pdf).  Evaluation of the pdfs was done 

using kernel density estimation (KDE) and results are shown in Fig. 13 for all the variables being 

considered so far to help discriminate which SIC inconsistencies are false and which are real.  

The pdfs for the SIC uncertainties and their distance from land show spikes that are not present 

in the probability distributions of the other variables being tested for their diagnostic potential.  It 

is hypothesized that these spikes are the result of systematic effects in the inconsistency data set, 

originating from a common noise source.  A first step in designing filters for noise reduction is to 

try to identify the common sources of noise responsible for the spikes in the pdfs (Section 4).  

We then identify thresholds exceeding the candidate spike segments, and eliminate the spike 

segments for the candidate thresholds in a systematic manner (Section 5).  The final filter is 

based on the threshold that produces the trimmed data subset with the lowest standard deviation, 

since the standard deviation shrinks as the largest outliers are removed.   

 

For the SSE, there appears to be spikes at both ends of the distribution, with a small spike close 

to SSE = 0% and a sharper, more prominent spike for high SSE.  The smearing uncertainty 

(Lavergne et al., 2019) is largest at the ice edge (SSE up to 40%; the atmosphere is more variable 

over the ice edge) and lowest near open water (SSE = 0% for SIC = 0%; the atmosphere is more 

transparent over open water yielding better accuracies).  The small spike at low SSE suggests the 

presence of false ice in open water (low SSE that should have been 0% SIC).  In other words, the 

spikes at low SSE indicate that there are false positives in the smearing uncertainty 

determination, since a low SSE is understood to be an indication of confidence that the retrievals 

should be accurate, but the noise spike at the low end of the distribution suggests otherwise.  The 

large spikes for high SSE suggest shortfalls in the atmospheric correction at low ice 

concentrations (i.e., the ice edge).  The impact of the systematic effects on inconsistencies with 

high SSE (i.e., the ice edge and low concentration areas (SIC < 15%)) is particularly prominent 

in the SICCI distribution, showing a significantly larger and wider spike than in the OSISAF 

SSE pdf.  Note also that the low concentration spike, clearly evident in the SICCI pdfs for the 

two uncertainty terms, is still visible in the SSE pdf associated with the OSISAF inconsistencies, 

but it is completely absent from the pdf for the total standard errors (TSE).  We took this as 

supporting evidence that the SSE was more sensitive than the TSE to the presence of false ice, 

and thus a better discriminator of the inconsistencies.  Additionally, since the smearing 

uncertainty is the dominant source of error in the SIC retrievals we use SSE, instead of TSE, as 

the diagnostic parameter of choice from hereafter.   

 

In the same spirit of this observation, we can say that the smearing uncertainty, computed as the 

difference between the highest and lowest SIC values in a 3×3 neighborhood grid around each 

pixel in the grid (Lavergne et al., 2019), is another measure of spatial variability, very similar to 

the 3×3 Sobel operator considered here as proxy for the local variability of the SIC 
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inconsistencies.  Note, however, that the pdfs for the Sobel-derived spatial gradients shown in 

Fig. 13, do not exhibit any spikes in the distributions like the ones in the SSE pdfs.  We take this 

as an indication that our Sobel estimate of the SIC spatial variability is less sensitive to noise in 

the inconsistency set, and as such we remove it from the diagnostic tools from this point forward.  

Hence, the two spikes in the SSE distribution not only suggest residual noise due to atmospheric 

influence, undetected by the atmospheric correction and the OWF, but potential residual noise 

from the SIC spatial variability in the ice edge, probably due to the enhanced atmospheric 

variability in the same ice-edge domain.  Finally, open water pixels near the ice edge can reach 

higher SSTs and thus can have a significant impact on the inconsistencies, especially when SIC 

retrievals are gridded or when mixed pixels are binned/interpolated to finer resolution grids.  

This emphasizes the importance of this variable as discriminator for inconsistencies associated 

with interpolation/gridding effects. 

 

The pdfs for the inconsistencies’ distance from land also show spikes for SIC in close proximity 

to land in both products, but whereas the spike completely dominates the distribution of the 

OSISAF inconsistencies, the SICCI distribution appears to be less impacted with a narrower 

spike and a quick recovery in terms of pdf smoothness for SICs not too far off from land.  The 

dominant impacts of SSE with SICCI and distance with OSISAF revealed in the pdfs give 

support to our unsubstantiated claims, made in the previous section based, solely on the visual 

inspection of the inconsistency examples shown in Figs. 9 and 10. 

 

The last variable considered in the preliminary set of potential discriminators of true and false 

inconsistencies is the temporal variability of the SIC.  Temporal variability could be useful to 

identify errors more random in time, but the inconsistencies proved to be more systematic in 

nature.  This is supported by the smoothness of the corresponding pdfs shown in the last row of 

Fig. 13.  Since there are no visible spikes in the density distributions of the temporal variability 

of the SIC inconsistencies in either SICCI or OSISAF, we eliminated this variable from the 

diagnostic tools.  This leaves SSE and minimum distance-from-land (DISmin) as main variables 

to help discriminate true from false inconsistencies.   

 

The sensible thing to do in the presence of these systematic effects is to vary the range of data 

used to extract the result or to implement data cut offs to ensure the quality of the data.  Thus, we 

propose filters for the correction of systematic errors in the SIC inconsistencies based on 

thresholds for a SSE range, (SSEmin, SSEmax), and a DISmin requirement, aimed at reducing the 

spikes in the associated pdfs.  There is no unequivocal indication of where these thresholds 

reside just from the look of the probability distributions.  Visual inspection of the SICCI and 

OSISAF SSE pdf suggests that SSEmin is around 2 – 5%.  The SSEmax, on the other hand, is not 

so easy to pin down especially for SICCI since the high smearing spike decreases gradually from 

~38% to ~32%.  In an effort to narrow down on a potential range for SICCI SSEmax, we also 

looked at the joint probability density function of SIC and SSE shown in Fig. 14.  The joint pdf 

shows that most the SICCI inconsistencies have smearing uncertainties > 35%, suggesting a 

perhaps SSEmax should be ~32 – 35%.  For OSISAF the high SSE spike is better constrained 

suggesting a preliminary range ~36 – 38%.  As for DISmin, it is a well-known fact that, due to the 

coarse resolution of microwave radiometers, data may be influenced by land up to 70 km from 

the coastline (Cavalieri et al., 1999; Tonboe et al., 2016).  The pdfs for distance indicate that the 

land spillover is affecting SICs retrieved within ~40 km from land.  Hence, we proposed an 
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exploratory range for the DISmin threshold between 30 and 70 km.  Since this effect appears to be 

less prominent in the SICCI inconsistencies, it suggests that perhaps the DISmin requirement can 

be relaxed with SICCI. 

 

4.2 Statistical characterization of the SIC vs. SST functional dependence for filter 

applications 

 

Throughout this work we define an inconsistency as an ice concentration pixel (SIC > 0%) that, 

when compared with an independent SST product on the same grid resolution, has a 

corresponding SST pixel with a temperature ≥ 3 °C.  We termed the pair (SIC > 0%, SST ≥ 3 °C) 

to be “inconsistent” because, intuitively, we question the validity of having a significant fraction 

of ice coexisting with what appears to be a well-above freezing SST at polar latitudes.  The SIC 

and SST products being compared in this study are retrieved independently and individually.  In 

reality, however, a pixel with, say, SIC = 30% indicates that the other 70% of the pixel is open 

water.  So, in a sense, this is a “mixed pixel problem” with the pixel representing the average of 

two spectral classes emitted by two different surfaces on the ground, one ice and the other water, 

but each surface being the focus of a separate retrieval.  If they were retrieved simultaneously, 

one would have to consider how the two surfaces interact along the common edge.  In other 

words, a joint retrieval would require explicit characterization of the relationship between SIC 

and SST in the MIZ, (the surface domain of the mixed pixel).  In reality, we are working with 

independently-derived SIC and SST retrievals. 

 

Scatter plots of SIC vs SST for the 2014 inconsistency set for both the SICCI and the OSISAF 

products, are shown in the top two panels of Fig. 15.  At first sight, the scatter plots for both 

products seem to have very little in common, but there is substantial overlapping obscuring what 

is really going on, especially for OSISAF.  A hexbin plot is an alternate representation of the 

relationship between two variables that can be particularly useful when there are a lot of data 

points, case in point, the scatter plot of SIC vs. SST for OSISAF shown in Fig. 15.  The hexbin 

plot partitions the spatial domain of the (SIC, SST)-pairs in hexbins and gives a visual 

representation of the total counts per hexbin, as indicated by the color of the bins.  This is shown 

in the bottom row panels of Fig. 15.  In the selected color scale, black corresponds to bins with 

very few counts.  If we ignore these for the time being, then the colored bins for SICCI and 

OSISAF, although not entirely equal, show some similarities in that both products have the 

greatest concentration of points near the origin (yellow and blue colors).  

 
The red bins, separating the very dense from the very sparse bins, are particularly interesting 

especially for SICCI because they cluster in a curve that resembles the coexistence curve in the 

phase diagram for water (i.e., the solid-liquid phase boundary).  The curve of red bins has a 

negative slope (i.e., the tangent) consistent with the slope of the coexistence curve for ice-water 

boundary, defined by the Clausius-Clapeyron equation for melting/freezing.  The coexistence 

curve denotes the (thermodynamically favorable) conditions at which two distinct phases may 

coexist.  Following this train of thought, we will use the red curve apparent in the SICCI hexbin 

plot to try to define a sort of coexistence curve that characterizes the functional dependence 

between SIC and SST in mixed pixels.  The color bins in the hexbin plot suggests that the (SIC, 

SST) inconsistency pairs seem to fall in one of two areas of their joint space domain, whereby 

for medium to high concentrations (SIC > ~10%), the SST decreases gradually with increasing 
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concentration from about 10 °C to 3 °C (our lowest SST by definition of what constitutes an 

inconsistency), but for low ice concentrations (SIC < 10%) the open water portion of the pixel 

can achieve significantly higher SSTs.  It seems to make sense to use this functional dependence 

to filter out the inconsistencies outside the boundary established by the red bins (i.e., black bins).  

The main problem is, though we have a good idea of the shape of the SIC – SST functional 

dependence from the pattern revealed by the red bins in Fig. 15, we do not know its exact form.   

 

Fig. 16, which indicates what inconsistencies in the scatter plots of SIC vs SST come from inside 

or outside the Arctic circle (points above 66.5°N are represented in red and below in blue), 

suggests that retrievals from outside the Arctic circle are solely responsible for the tail end of the 

low concentrations with high SST departures described above (i.e., they come from the Baltic 

Sea, the Hudson Bay and the Sea of Okhotsk).  It seems reasonable, to a point, that mixed pixels 

from subpolar latitudes are able to reach warmer temperatures, but how high can the SSTs really 

get inside the ice edge (SIC < 15%)? Similarly, it does not appear to be reasonable to have closed 

ice pixels (SIC > 80%) with SST = 3 °C, as seen at the tail end of the high concentrations with 

low SSTs.  Obviously, there should be a maximum in SST and in SIC, for the two phases to 

coexist without breaking the laws of thermodynamics.   

 

A parameterization for SST = f (SIC), based on the monthly scatter plots of the SICCI SIC vs. 

OSTIA SST (Fig. 17), was derived by trial and error as: 

 

 𝑆𝑆𝑇𝑙𝑖𝑚 = 6.24 (5.5 𝑆𝐼𝐶⁄ )0.025 − 25.8, (1) 

 

and a series of SIC corrections are proposed based on this functional dependence.  In one, for 

inconsistencies with SIC > 10%, only those with matching SST < SSTlim are kept.  For SIC ≤ 

10%, all SIC values are retained.  Note that the precise functional form could depend on the 

resolution of the products, since it represents a potentially realistic balance within a given pixel.  

This filter is illustrated by the black curve in Fig. 17 for the monthly scatter plots of SICCI SIC 

vs SST.  As can be seen in the monthly plots, the filter eliminates a significant number of outliers 

for the months of June, July and August, but leaves inconsistencies for other months mostly 

untouched, thus confirming that the parametric coexistence curve correction works as expected.  

We also consider an alternate variation of this correction in which all SIC with SST < SSTlim are 

passed by the filter.  These filters need to be used in combination with boundary conditions that 

limit the range in which Eq. (1) applies, i.e., with filters that restrict f (SIC, SST) to a domain 

specified by a maximum allowable SST and maximum SIC for physically meaningful SIC-SST 

pair combinations.  That is, in addition to the filters just described, we also eliminate SIC 

inconsistencies with SST > SSTmax and SIC > SICmax.  These two filters, exploiting the SIC vs. 

SST functional dependence, constitute a significant departure from the current DMI approach 

that eliminates all the inconsistencies for which SIC > 15% and SST > 3 °C. 

 

Once again, we have no clear indication of the values of SSTmax and SICmax just by looking at the 

scatter plots of SIC vs. SST.  An exploratory analysis in which the SSTmax threshold was 

systematically lowered, starting from SST = 20 °C, followed by a visual assessment of the 

impact of the threshold on the monthly MVC maps of remaining SIC for July and August, 

indicates that SSTmax should be ~10 – 12 °C to eliminate false SICs in the Baltic Sea and the Sea 

of Okhotsk in the summer.  This range worked for both SICCI and OSISAF.  As far as the value 
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of SICmax, the threshold should establish the maximum SIC at which a fraction of the pixel can 

still be open water, and that is the MIZ.  Thus, SICmax should be around 70 – 80%, which is the 

concentration threshold used by different authors for the start of the pack/closed ice (i.e., Tonboe 

et al., 2016; Peng et al., 2018), i.e., the upper SIC threshold that defines the MIZ boundary.  

 

4.3 Summary of proposed filters  

 

Inconsistencies are filtered out if:  

1. Filter 1 (F1): DIS < DISmin: Minimum distance from land (km) 

2. Filter 2 (F2): SIC > SICmax: Maximum SIC for physically meaningful SST (%) 

3. Filter 3 (F3): SST > SSTmax: Maximum SST for a physically meaningful SIC (°C) 

4. Filter 4 (F4): SSE < SSEmin or SSE > SSEmax: Minimum and Maximum SSE to eliminate 

the spikes at both ends of the pdf for the SSE corresponding to the SIC inconsistencies. 

5. Filter 5 (F5): SST > SSTlim = f (SIC) for SIC > 10% 

6. Filter 6 (F6): SST > SSTlim = f (SIC) for SIC > 0% 

 

and everything outside the threshold will be untouched.  We suggest to use these filters in 

combination, not in isolation.  Note that the F1, F2, and F3 filters (DISmin, SICmax, and SSTmax) 

help eliminate residual noise that escaped detection during processing of the CDR.  That is, they 

result from deficiencies in the noise corrections implemented with the SIC algorithm.  While F1 

and F2 address wrong retrievals resulting from proximity-to-land artifacts, F3 targets residual 

noise due to atmospheric influence.  In other words, these three filters remove erroneous SIC 

values that should have been reported as open water (i.e., SIC = 0%), but were somehow (a 

cloud, a narrow inlet or piece of land) misclassified as ice (SIC > 0%).  This opens the possibility 

of reclassifying inconsistencies eliminated by these filters as SIC = 0%.  In that sense, they 

would resemble traditional weather filters reported in the literature (Ivanova et al., 2015, 

Lavergne et al., 2019) and implemented with traditional SIC algorithms elsewhere, but with the 

main difference that they are being applied directly to the SIC retrievals (at level 3 processing), 

and not at the brightness temperature level (level 2).  The F4, F5, and F6 filters (i.e., SSE and 

SST filters based on the functional curve of SIC vs. SST), on the other hand, reduce noise by 

eliminating inconsistencies where the SIC and the SSTs are not in balance according to the 

coexistence SIC-SST curve (e.g., excessive ice for the coincident temperature or vice versa).  

Thus, while the former three filters reduce noise resulting from misclassification issues, the latter 

three reduce noise resulting from misrepresentation issues.   

 

In our approach here, we applied the misclassification corrections first, followed by the 

misrepresentation corrections.  While both F5 and F6 use the same parameterized curve for 

SSTlim (Eq. 1), they differ in the way the function is implemented at the ice edge (SIC < 10%); 

hence, they are considered separately.  This gives rise to two alternate filtering schemes that, for 

lack of a better name, are termed F5- and F6-chains for the final filter used in the sequence.   
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Figure 13. Probability density functions of individual variables (SIC, SST, SSE, TSE, SIC 

distance from land (distland), spatial variability (Sobel operator), and temporal variability for: 

SICCI (left column) and OSISAF (right column) products. 
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Figure 14. Joint pdfs of SIC inconsistencies and associated OSTIA SST (left column), and SIC 

inconsistencies and associated smearing (SSE) incertainties (right column) for SICCI (top row) 

and OSISAF (bottom row) products. 
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Figure 15.  SIC vs. SST dependence for SICCI (left) and OSISAF (right). Top: scatter plots; 

bottom: hexbin plots with colors indicating density of the bins for the SIC and SST dependence 

displayed in the scatter plots above. 

 

 

 
Figure 16. Scatter plot of the 2014 inconsistencies vs. the OSTIA SST, color-coded by location 

relative to the Arctic Circle (Latitude = 66.5 ºN).  The SICCI SIC-SST dependence is shown on 

the left and the OSISAF on the right. Inconsistencies inside the Arctic circle are colored in red 

and inconsistencies outside the Arctic circle are colored in blue.  Inconsistencies from outside the 

Arctic circle have more scatter, which is not surprising since this is where the marginal seas of 

the Arctic are located (Figs. 5 and 6) and where the SIC retrieval algorithms appear to have more 

issues as suggested by the abundance of inconsistencies in these areas (Fig. 2).   
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Figure 17. Monthly scatter plots of SIC vs. OSTIA SST for SICCI 2014, color-coded by the SSE.  

The curve in black is a combination of SIC = 10% (vertical line) and the SSTlim function (curve) 

for SIC > 10%.  Together, they illustrate filter function F5. Only data to the right of the funtion is 

filtered out by F5.  With few exceptions, the filter eliminates outliers mostly from June through 

August.  The July plot illustrates why the F5 filter needs to be used in combination with a 

requirement for SSTmax.  Similarly, the plot for June shows the need for a filter that bounds the 

function at a SICmax. 
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5. Filter Evaluation 

 

We need to choose the values of the thresholds for DISmin, SICmax, SSTmax, SSEmin, and SSEmax 

for the proposed filters.  As an initial approach to narrowing the range of the threshold values 

identified from the marginal pdfs in Section 4, we used the standard deviation (SD) of the SIC 

values remaining after elimination of suspected retrievals.  The assumption was that the SD of 

the remaining set should be smaller in magnitude due to reduced noise following removal of the 

inconsistencies that exceed the thresholds.  To evaluate the impact of the different filters using 

the finalized thresholds, a more detailed metric employing a combination of SIC and SST values 

was used and is described in Section 5.2.  Ultimately, the final judgement on the success of the 

different filters was also subjectively based on the appearance of the pdfs for the filtered SIC 

retrievals and corresponding joint pdfs for SIC vs. SST and SIC vs. SSE (Section 5.3), as density 

distributions for the denoised sets should not exhibit the discontinuities observed in the original 

inconsistency set.   

 

5.1 Threshold Determination 

 

To help us determine the optimal thresholds for the final filter combinations, we apply the 

individual filters using a range of possible thresholds determined from the pdfs in Section 4 and 

evaluate the statistics shown on Tables 3 (SICCI) and 5 (OSISAF).  We then look for the 

threshold, from the range of realizations, that produces the subset of filtered data with the 

minimum standard deviation, since this subset has the least spread or variability introduced by 

the noise source being addressed by the specific filter.  This is indicated by the columns shaded 

in blue in Tables 3 and 5.  Once we have narrowed in on a threshold based on the outcome with 

the lowest SD, we evaluate the next filter over the truncated data, i.e., the data that remains after 

the cut-offs from the previous filter.  For clarity, we carry on the statistics from the previous 

finalized correction (the shaded blue column) at the beginning of each table, since they become 

the new input data to the next filter.  This facilitates comparing the statistical properties of the 

new corrections at each step of the chain and its effectiveness at removing additional variability 

(the larger the difference between the highest and lowest SD, the greater the deviation and the 

higher the variability).  The headings of the columns in Tables 3 and 5 indicate the valid ranges 

of the parameters being tested, since the tabulated statistics are for the truncated sets that passed 

the filter; for instance, the sensitivity analyses to determine the final SSE threshold for SICCI 

(Table 3, F4) indicate a heading of “3 ≤ SSE ≤ 33” for the column shaded in blue.  This is the 

range of valid SSEs corresponding to the remaining set, after the filter F4 eliminated SIC 

inconsistencies with SSE < 3% and SSE > 33%.  The reduced data sets that remain at the end of 

the chain of sequential corrections tested in Tables 3 and 5 (i.e., what is left after F4) are used as 

the common input to the final filters, F5 and F6. Statistics for the two ensuing filtering schemes 

are shown in Tables 4 and 6 for SICCI and OSISAF, respectively.   

 

Selected thresholds for the proposed filters tested in Tables 3 and 5 for SICCI and OSISAF are 

as follows: 

 

SICCI filters: 

F1: DIS < 50 km  

F2: SIC > 75% 
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F3: SST > 10 °C 

F4: SSE < 3% and SSE > 33%. 

 

OSISAF filters: 

F1: DIS < 60 km  

F3: SST > 10 °C 

F4: SSE < 3% and SSE > 37%. 

 

The final thresholds shown above are consistent with the observations made in Section 4 based 

on the pdfs of the parameters used in the filters (Fig. 13).  For instance, since the spikes in the 

pdf of the SSE were significantly larger for SICCI than OSISAF, it was expected that SICCI 

would need a more restrictive SSE (F4) filter, especially for high smearing uncertainties, which 

is reflected in the findings of Tables 3 and 5 with SSEmax = 33% for SICCI and SSEmax = 37% 

for OSISAF.  Similarly, OSISAF appears to be more affected by proximity-to-land issues 

needing a more aggressive filter in terms of minimum distance from land. Once again, the 

sensitivity analyses led to DISmin = 50 km for SICCI and DISmin = 60 km for OSISAF.   

 

Note that there is no F2 filter for OSISAF since the maximum SIC observed after the OSISAF 

inconsistencies are filtered by distance is 73.7% (Table 5, F1, last row), which is below the final 

concentration threshold used with SICCI (F2: SIC max = 75%) to eliminate the high 

concentrations remaining in the F1-filtered data (Table 3, F1, last row shows maximum 

concentrations > 90%).  Even if we settled on the same distance-from land threshold used with 

OSISAF (DISmax = 60%), the truncated SICCI data would still have SIC > 85% (Table 3, F1, 

DIS < 60, last row), requiring a high concentration filter.  Maps of MVC of the remaining 

inconsistencies from the finalized thresholds, at each step of the filtering sequence, are shown in 

Figs. 19 and 20 for SICCI and OSISAF, respectively.   

 

The two filtering chains (F5 and F6 in Tables 4 and 6) reduce the original pool of inconsistencies 

to a subset less than 2% the original size with what appears to be marginal improvements in 

terms of the mean and SD: for the SICCI inconsistencies (98.3% of original data was cut off), the 

mean decreased from 15% in the original set to ~13% in the final sets (Table 4) and the SD 

decreased from 17.0% to ~15% in both filtering schemes (F5 and F6); for the OSISAF 

inconsistencies (99.1% of the original data was cut off), the mean SIC decreased from 15.0% to 

~12% (Table 6) and the SD decreased from 14% to ~12% in both filtering schemes.  This 

implies a difference in SD between the original and final sets is of the order of 2% for both 

products.  Even though the SDs of the filtered data (12 – 15%) suggest that there is a lot of 

variability left in the remaining inconsistency sets after all the filtering is done, the SDs of the 

denoised sets are representative of the variability within the ice edge.  This is supported by maps 

of the filtered data (Figs. 19 and 20) showing that the great majority of the remaining SICs are 

located in areas of low SIC (around the ice edge), with the exception of the Hudson Bay and 

some small areas of intermediate-high concentrations around the Canadian Archipelago, and the 

Beaufort and Laptev Seas.  
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Table 3.  Sensitivity analyses of the SICCI corrections to incremental changes in the filtering 

thresholds.  Columns shaded in blue mark the thresholds that produce the most effective filters at 

reducing the variability of the remaining set (lowest SD).  Since filters are applied sequentially, 

the first column of the next filter is the shaded column from the previous correction.  This is 

done to facilitate identification of further improvement by subsequent filters 

SICCI F1 No filter DIS ≥ 40 km DIS ≥ 50 km DIS ≥ 60 km DIS ≥ 70 km 

count 10503580 5530229 4967974 4330457 3695539 

mean 14.89 14.51 14.56 14.54 14.48 

SD 16.99 14.79 14.72 14.79 14.83 

min 0.01 0.01 0.01 0.01 0.01 

25% 2.25 3.14 3.19 3.12 3.01 

50% 8.27 9.59 9.69 9.60 9.46 

75% 21.89 21.06 21.20 21.22 21.20 

max 99.92 92.32 91.64 86.87 86.87 

 

SICCI F2 DIS ≥ 50km SIC ≤ 75% SIC ≤ 80% SIC ≤ 85% SIC ≤ 90% 

count 4967974 4965795 4967368 4967805 4967951 

mean 14.56 14.53 14.55 14.55 14.56 

SD 14.72 14.67 14.71 14.72 14.72 

min 0.01 0.01 0.01 0.01 0.01 

25% 3.19 3.19 3.19 3.19 3.19 

50% 9.69 9.68 9.68 9.69 9.69 

75% 21.20 21.18 21.20 21.20 21.20 

max 91.64 74.99 79.98 84.98 89.96 

 

SICCI F3 SIC ≤ 75% SST ≤ 8°C SST ≤ 10°C SST ≤ 12°C SST ≤ 14°C 

count 4965795 306486 308929 309537 310453 

mean 14.53 16.05 16.00 15.97 15.94 

SD 14.67 15.39 15.35 15.35 15.34 

min 0.01 0.01 0.01 0.01 0.01 

25% 3.19 3.71 3.70 3.69 3.69 

50% 9.68 11.11 11.06 11.04 10.99 

75% 21.18 23.95 23.83 23.81 23.77 

max 74.99 74.26 74.26 74.26 74.26 

 

SICCI F4 SST ≤ 10°C 3 ≤ SSE ≤ 31 3 ≤ SSE ≤ 33 3 ≤ SSE ≤ 35 3 ≤ SSE ≤37 

count 308929 165671 183966 203756 225137 

mean 16.00 12.58 12.92 13.33 13.75 

SD 15.35 15.32 15.28 15.30 15.28 

min 0.01 0.01 0.01 0.01 0.01 

25% 3.70 2.0 2.19 2.42 2.65 

50% 11.06 6.21 6.71 7.27 7.92 

75% 23.83 16.87 17.40 17.96 18.73 

max 74.26 74.26 74.26 74.26 74.26 
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Table 4:  Statistics for the SICCI product after final filters F5 and F6 are applied to the sequential 

chain of corrections shown in Table 3 
SICCI Final 3 ≤ SSE ≤ 33 F5 F6 

count 183966 182308 180526 

mean 12.92 12.89 12.97 

SD 15.28 15.33 15.39 

min 0.01 0.01 0.01 

25% 2.19 2.16 2.15 

50% 6.71 6.61 6.65 

75% 17.40 17.37 17.53 

max 74.26 74.26 74.26 

 

Table 5: Sensitivity analyses of the OSISAF corrections to incremental changes in the filtering 

thresholds.  Columns shaded in blue mark the thresholds that produce the most effective filters at 

reducing the variability of the remaining set (lowest SD).  Since filters are applied sequentially, 

the first column of the next filter is the shaded column from the previous correction.  This is 

done to facilitate identification of further improvement by subsequent filters 
OSISAF F1 No filter DIS ≥ 40 km DIS ≥ 50 km DIS ≥ 60 km DIS ≥ 70 km 

Count 87888090 12131750 10104590 8347062 6678692 

Mean 15.03 12.99 12.58 12.09 11.86 

SD 14.14 11.71 11.54 11.47 11.49 

Min 0.01 0.01 0.01 0.01 0.01 

25% 2.42 3.47 3.39 3.08 2.85 

50% 10.74 10.32 9.68 8.93 8.61 

75% 25.37 18.95 18.28 17.70 17.44 

max 98.67 79.97 73.70 73.70 73.70 

 
OSISAF F3 DIS ≥ 60 km SST ≤ 8°C SST ≤ 10°C SST ≤ 12°C SST ≤ 14°C 

Count 8347062 477448 479125 479534 480095 

Mean 12.09 13.17 13.15 13.14 13.13 

SD 11.47 12.23 12.22 12.22 12.22 

Min 0.01 0.01 0.01 0.01 0.01 

25% 3.08 3.44 3.44 3.44 3.43 

50% 8.93 9.96 9.94 9.92 9.91 

75% 17.70 19.25 19.21 19.20 19.19 

Max 73.70 72.10 72.10 72.10 72.10 

 
OSISAF F4 SST ≤ 10°C 3 ≤ SSE ≤ 33 3 ≤ SSE ≤ 35 3 ≤ SSE ≤ 37 3 ≤ SSE ≤ 38 

count 479125 417583 432408 445868 452039 

mean 13.15 11.74 11.94 12.16 12.30 

SD 12.22 11.87 11.80 11.76 11.77 

min 0.01 0.01 0.01 0.01 0.01 

25% 3.44 2.85 2.99 3.13 3.18 

50% 9.94 8.15 8.52 8.92 9.09 
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75% 19.21 16.60 16.90 17.31 17.60 

max 72.10 72.10 72.10 72.10 72.10 

 

Table 6: Statistics for the OSISAF product after final filters F5 and F6 are applied to the 

sequential chain of corrections shown in Table 5 
OSISAF 3 ≤ SSE ≤ 37 F5 F6 

count 445868 441560 439761 

mean 12.16 12.12 12.15 

SD 11.76 11.80 11.81 

min 0.01 0.01 0.01 

25% 3.13 3.08 3.07 

50% 8.92 8.76 8.81 

75% 17.31 17.25 17.32 

max 72.10 72.10 72.10 

 
 

5.2 Proposed Metrics to Evaluate Filter Impact 

 

Although the improvement of the proposed filters suggested by the statistics in Tables 4 and 6 

seems marginal at first sight, the decrease in standard deviation before and after the filter is not 

the correct metric to assess the impact of the corrections.  In order to understand why this is the 

case, we just need to look at the binned density plots of SIC vs. SST for the truncated sets after a 

new filter application (Figs. 23– 24 for SICCI and OSISAF, respectively). As can be seen from 

the two plots on the second row of Fig. 23 for SICCI, the spread of the bins, and hence the SD, 

increases considerably after the F3 filter is applied.  This is indeed the case as shown in Table 3 

for F3, with the SD increasing from 14.7% (first column) to 15.4% (blue column).  The F3 filter 

cuts off a significant portion of the low concentration values with high SSTs.  The red hexbins at 

the end of this tail, visible in the left plot for the input data (F1-F2 subset) to F3, indicate that 

there are bins with a high number of counts in this cluster.  After their elimination, the SD of the 

remaining set is “seeing” more spread because it is measuring the impact of removing the 

densely-compacted cluster at the end of the high SST-low SIC tail.  In a purely statistical sense, 

the increase in SD might suggest that the F3 filter made things worse resulting in a truncated set 

with increased variability, yet we have a high degree of certainty that these values are wrong 

(they correspond to false SIC retrievals in the Baltic and Okhotsk Seas where open water pixels 

were misclassified as ice likely due to atmospheric influences and land spillover effects) and thus 

are justified in eliminating them.  This goes to show that metrics based solely on the SD are not 

meaningful here when we are trying to assess the impact of the proposed filters. 

 

In order to evaluate the impact of the suggested corrections, we tested two metrics that combine 

the SIC and the SST in one term, so that changes in one variable reflect the impact on the other 

in a more insightful way for the problem at hand.  Those metrics are the sum of the SDs for both 

SIC and SST, M1 = SDsic + SDsst, and a new metric M2 we define as follows: 
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 𝑀1 =  √𝑆𝐷𝑠𝑖𝑐
2 + 𝑆𝐷𝑠𝑠𝑡

2  (2) 

𝑀2 =  
∑  (𝑆𝑆𝑇 − 3) ∗ 𝑆𝐼𝐶 

𝑁
 

 

where the standard deviations add in quadrature in M1.  For M2, N is the size of the unfiltered 

SIC inconsistency set (i.e., the sample size without cut offs).  We subtract SST = 3 °C, since this 

is the minimum temperature attained by the inconsistencies, according to our definition of what 

constitutes an inconsistency (SIC > 0% and SST ≥ 3 °C).  The equation for M2 is a sort of 

“energy conservation” metric, but instead of energy it looks at the SIC-SST conservation in a 

mixed pixel whereby, in a physically realistic scenario, if the SSTs are high in the open ocean 

portion of the pixel, the concentrations should be low in the ice-covered fraction and, vice versa, 

if the SICs are high, the corresponding SSTs should be low.  This implies that when the SIC and 

SST are “consistent” in the expected fashion, M2 should be close to 0.  The units of M2 are °C.  

In thermodynamics, thermal energy,  T, where  is the Boltzmann’s constant and T is absolute 

temperature, has units of Kelvin.  Although consistent in a physical sense with units of thermal 

energy conservation, the units of M2 are meaningless in the present context, so we have opted to 

ignore them hereafter.  By averaging M2 by the unfiltered population size, we are simply 

bringing the sum of the product of the two SDs to a manageable number that can otherwise be 

very large and difficult to grasp.  The proposed metrics are evaluated in Tables 7 – 10 for the 

SICCI product and in Tables 11 – 13 for OSISAF.  We also include the SDsic, the standard 

precision metric, for completeness.  As shown in Tables 7 and 11, the original (unfiltered) set of 

inconsistencies has M2 metrics which are far from the expected zero-target, with M2 = 1.6 for 

the SICCI inconsistencies and M2 = 4.0 for the OSISAF inconsistencies.  

 

Before we proceed with the assessment of the impact of the corrections, we need to take a look at 

Fig. 18.  The different panels in Fig. 18 show the SICCI data remove by each filter when applied 

in isolation.  The takeaway message from this illustration is that there is an overlap in the 

parameter space of corrections with different filters removing portions of the same data.  The 

impact of each individual filter, therefore, depends in the order in which they are applied.  Since 

some filters remove significant portions of the data (i.e., F1, F3) and others remove very little 

(F2), it may seem that the last filters in the sequence have little or no impact at all (F4, F5, and 

F6).  For this particular reason, we first look at the overall impact of the filters in isolation and 

then we explore the impact of the sequencing order, especially in connection with the order of 

the filtering schemes evaluated in the previous section.  A note of caution with regards to filters 

F5 and F6 is that F5 cannot be applied individually without F3, whereas F6 and F3 are mutually 

exclusive.  This is exemplified in the last two panels of Fig. 18.  It can be seen in the left panel 

that if F5 is not bounded by an SSTmax in the interval for SIC < 10%, then it is not going to filter 

out the low concentrations with extremely high SST inconsistencies.  Leaving that fraction of 

data would have a measurable impact in the SD of the truncated set; therefore, F5 has to be used 

in conjunction with F3.  The right panel, on the other hand, shows that F6 does not need an SST 

max bound since the function for SSTlim (Eq. 1) crosses SIC = 0.01% (the minimum observed 

SIC inconsistency according to the statistics presented in Tables 3 and 5) at SST = 12.7 °C. 

Leaving the small fraction of inconsistencies with SSTs between 10 and 12.7 °C does not have a 

significant impact in the SD.  Hence, we can skip using the F3 with applying the filtering 

sequence ending with F6.   
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To evaluate the overall impact of the corrections, we first applied the filters one at a time and 

looked at the change in the metrics for the remaining set (see Table 7 for SICCI and Table 11 for 

OSISAF). We then introduce filter combinations in different sequences following different 

scenarios (Tables 8 – 10 and Tables 12 – 13 for SICCI and OSISAF, respectively).  For instance, 

in Tables 8 (SICCI) and 12 (OSISAF), we evaluate the impact of using filters based on SIC and 

SST only (no distance corrections applied).  In Tables 9 – 10 (SICCI) and 13 (OSISAF), we 

show the additional impact of bringing a distance correction into the mix as we evaluate the 

impact of the sequential order in the F5- and F6-chains.  Table 14 looks at the impact of the 

current DMI inconsistency flagging on SICCI and OSISAF for the overlapping domain with the 

proposed filters (i.e., SIC < 15%). 
 

5.2.1 Impact of the filters on the SICCI inconsistencies 

 

The impact of the individual corrections for the SICCI product is reflected in the order of the 

columns shown in Table 7, with the order of the parameters varying from less impactful to more 

impactful according to the M2 metric.  Some interesting aspects of the results condensed in 

Table 7 for the SICCI product are as follows.  The correction for extreme SIC values (F2) 

removes a tiny fraction of data (< 1%), yet it causes a measurable impact on both the M1 and M2 

metrics adding confidence to the recommendation that these retrievals should be removed (or 

alternatively, set back to open water, i.e., SIC = 0%).  The smearing correction and distance to 

land (F4 and F1) corrections have a very similar impact for the SICCI product in terms of the M2 

metric, which is surprising since the distance correction was initially introduced for the benefit of 

the OSI-450 product, which has a significantly greater number of inconsistencies relative to 

SICCI along the coasts, as revealed by the inconsistency maps in Figs. 5 and 6.  These coastal 

inconsistencies are in all likelihood the result of land-contaminated pixels in the microwave 

frequencies.  The SST corrections F3+F5 have the greatest impact when applied individually 

according to the M2 metric.  These filters produce outputs with M2 of 0.38 and 0.36, which is a 

significant reduction from the M2 = 1.6 in the original set, although they eliminate 97% of the 

data.  Note that the metric M1 is not sensitive to the additional impact of F5 over F3, giving the 

same M1 = SDsic + SDsst for both F3 and F3+F5.  As a matter of fact, the M1 metric does not 

discriminate much among the top three most influential filters identified by M2 (last 3 columns 

in Table 7).  By being insensitive, however, this metric suggests that the SDs of the truncated 

sets are robust, which adds confidence to the direction of the filters.  It is also noteworthy that 

M1 = SDsic + SDsst ≈ SDsic; thus, SDsst → 0.  This suggests that the final error in the filtered 

inconsistencies is dominated by SIC contributions.  The implication of this observation is that by 

filtering spurious SIC inconsistencies, we have also eliminated potential SST outliers.  The fact 

that SDsst is not contributing to the error is welcome news since a main cautionary argument 

against using (NWP) ancillary data in the atmospheric correction of SIC DCRs is that these 

fields might introduce trends of their own.  A more reaching implication is that a combined 

microwave SST – SIC retrieval can be beneficial for reducing noise in both products, especially 

at high latitudes where the SSTs are also known to have large uncertainties, albeit introduced by 

different sources of noise (SST is retrieved at lower microwave frequencies (~6 – 11 GHz) where 

cloud water (hence, LWC) has a very different spectral signal from the SST and can be easily 

removed.  In other words, SST has the potential to enhance the RTM-based atmospheric 

correction of the TB in the SIC algorithm retrieval and vice versa, higher MW frequencies can 

help discriminate water vapor effects dominating the atmospheric correction of the SSTs).   
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The statistics shown in Table 8 consider corrections based on the SIC-related parameters (F2 and 

F4) and an ancillary SST product (F3, F3+F5, and F6). Applying a filter combination based on 

SIC parameters only (SIC+SSE) eliminates half the inconsistencies with a significant reduction 

in the M2 metric, but the resulting M2 = 0.55 indicates marginal improvements compared to 

what can be achieved if one is willing to consider ancillary data for filtering purposes.  By 

adding an SST-based filter, M2 can be reduced even more, to 0.32–0.36, as shown in Table 8, 

but the real impact is seen when the distance-from-land filter (F1) is also included (Tables 9 and 

10).  A distance filter in combination with SIC-only filters (SIC + SSE) eliminates ¾ of the 

inconsistencies and results in M2s as low as ~0.2 (Table 9).  Combinations including corrections 

for SIC, SST and distance result in M2 < 0.18 (last 2 columns of Tables 9 and 10).   

In terms of the F6 or F5 corrections, the two filtering schemes end up having the same impact 

with M2 = 0.16 for the F6-chain, just slightly better than the M2 = 0.17 for the F5-chain.  

Implementing one over the other has no significant difference except for the fact that the F6-

chain has one less filter (the F3) than the F5-chain.  These filter combinations bring us closer to 

the zero-target in terms of our M2 metric, indicating that the remaining SICCI values (< 2% of 

the original set) are “consistent” with their SST counterparts, at least in terms of the SIC vs SST 

dependence depicted in Fig. 15.  The M1 metric, on the other hand, is not sensitive enough with 

basically all the sequencing realizations in Tables 9 and 10 achieving M1 ≈ 15.4.  Once again, 

for filter combinations with M2 < 0.38, SDsic + SDsst = SDsic, which suggests very little spread in 

the truncated SSTs after a few SIC corrections, which reiterates the fact that by reducing the SIC 

inconsistencies we are also eliminating noise in the matching SST retrievals. 

There is also something to be said about the impact of the filter combination F1+F2+F3 

(DIS+SIC+SST) shown in Table 10, column 2.  By eliminating only those SIC believed to be 

wrong/misclassified (DIS+SIC+SST in Table 10), the original inconsistency set is reduced by 

97.1%, with the remaining set having M2 ~0.4.  Additional filtering with F4 and F5 (the last 2 

columns of Table 10) eliminates a tiny fraction of noisy SIC retrievals (~1%), but their removal 

makes all the difference by cutting M2 in half and bringing the metric much closer to zero (M2 < 

0.2).  These results, as well as the high SIC correction (F2) in Table 7, suggest that “the devil is 

in the details,” as these small packets of concentrated variability can be highly impactful and 

should not be ignored. 

Table 7: Impact of the individual corrections to the SICCI product as measured by different metrics 

Filter Original SIC (F2) SST 

(F6) 

SSE 

(F4) 

DIS 

 (F1) 

SST 

(F3) 

SST 
(F3+F5) 

% Removed 0.0 0.6 93.9 50.2 52.7 97.1 97.0 
SDSIC Remain 17.0 16.0 18.5 17.5 14.7 15.4 15.4 
SDsic+SDsst 17.4 16.5 18.6 17.8 15.0 15.4 15.4 
M2 1.60 1.56 0.78 0.57 0.51 0.38 0.36 

 

Table 8: Impact of the SICCI corrections in terms of the proposed metrics for filter combinations 

including SIC and SST terms only 
Filter Combo SIC+SSE SIC+SSE+SST SIC+SSE+SST+F5 SIC+SSE+F6 

% Removed 50.7 50.7 97.0 97.0 

SDSIC Remain 16.0 17.7 17.7 17.8 

SDsic+SDsst 16.4 17.7 17.8 17.8 

M2 0.55 0.36 0.33 0.32 
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Table 9: Impact of adding the distance correction to the filter combination sequence used with SICCI that 

culminates with filter F6 as shown in Table 4 
Filter Combo DIS+SIC+SSE DIS+SIC+SSE+SST DIS+SIC+SSE+F6 

% Removed 72.1 98.2 98.3 

SDSIC Remain 14.1 15.3 15.4 

SDsic+SDsst 14.2 15.3 15.4 

M2 0.21 0.18 0.16 

 

Table 10: Impact of adding the distance correction to the filter combination sequence used with SICCI 

that culminates with filter F5 as shown in Table 4   
Filter Combo DIS + SIC DIS+SIC+SST DIS+SIC+SST+SSE DIS+SIC+SSE+SST 

+F5 

% Removed 52.7 97.1 98.2 98.3 

SDSIC Remain 14.7 15.4 15.3 15.3 

SDsic+SDsst 14.9 15.4 15.3 15.4 

M2 0.51 0.38 0.18 0.17 

 

 

5.2.2 Impact of the filters on OSISAF inconsistencies 

 

Once again, the impact of the individual filters when applied to OSISAF is reflected in the order 

of the columns of Table 11, shown in increasing degree of impactfulness.  Very interesting 

differences with respect to SICCI are observed at once.  The most obvious one is that the most 

impactful correction for OSISAF is the distance-from-land filter (F1).  Not only that, but this 

filter alone is enough to clean the OSISAF inconsistencies to look a lot like SICCI as revealed in 

the figures illustrating the impact of F1 (compare the top-right panels in Figs. 20 vs. 19, and 

Figs. 25 vs. 24).  Most surprisingly, the F1-ensuing M2 = 0.07 is less than half as much the M2 

for the heavily redacted SICCI subsets that survive the F5- and F6-chains (M2 ~0.16 – 0.17 from 

Tables 9 and 10).  Also, there is a large separation between this and the other M2 values for the 

other filters, implying that when applied in isolation, none is as effective as F1.  In fact, adding 

the whole sequence of filters used in the F5- and F6-chains (Table 13), only brings the M2 metric 

down by 0.02, from M2 = 0.07 to 0.05, at the expense of eliminating most all inconstancies for 

OSISAF (only 0.5% of the original set survives the F5 and F6 filtering schemes).  It is important 

to bear in mind that a filtering scheme for OSISAF based solely on distance-from-land would not 

exclude bad retrievals affected by atmospheric effects reflected in very high SSTs; thus, a 

minimum amount of filtering would also have to include a correction for SST max such as F3 to 

eliminate unwanted ice in the Baltic Sea for July and August (see the maps of remaining 

inconsistencies after F1 and F1+F3 in Fig. 20).  Table 13 (first column) shows that this minimum 

filtering effort results in a satisfactory M2 = 0.06, just 0.01 above the metrics for the full filtering 

schemes considered so far.  Final SDs for SIC and SIC and SST combined (Table 13) are 

~11.8%, which implies that the remaining OSISAF inconsistencies are representative of regions 

closer to the open water (very low concentrations), whereas the SICCI inconsistencies (SD 

~15.3%) are representative of the ice edge (SIC = 15% is the traditional value used to determine 

the ice edge). 

 

Also interesting is the fact that the OSISAF product is least impacted by the smearing 

uncertainty correction (F4).  This filter removes a merely 8.6% of the inconsistencies with a 

minor improvement in the M2 metric (M2 decreases from 4 in the original set to 3.68 in the F4-
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filtered data).  This should not be surprising since the smearing uncertainty correction was 

introduced to filter out noise driven by interpolation artifacts at the boundary between open water 

and ice (i.e., SIC = 0%), that were most likely introduced when the level 2 products were 

transformed to level 3 (i.e., going from satellite swath geometry to a regular grid) as part of the 

processing chain of the SIC products.  Since SICCI is a higher resolution product than OSISAF, 

it has higher smearing uncertainties at the ice edge compared to the smooth transitions in 

OSISAF.  This is apparent from visual inspection of the SSE MVC maps of the SICCI and 

OSISAF inconsistencies shown for June and July 2014 (bottom rows) in Figs. 5 and 6, 

respectively.  The smoothness of OSISAF explains why the SSE filter has less impact for 

OSISAF than SICCI, even when combined with the SST filters (Table 12).   

 

Table 11: Impact of the individual corrections to the OSISAF product as measured by different 

metrics 

Filter Original SSE 

(F4) 

SST 

(F3) 

SSE 
revised 

SST 

(F3+F5) 

SST 

(F6) 

DIS 

(F1) 
% Removed 0.0 8.6 94.1 61.1 95.0 95.4 90.5 

SDSIC Remain 14.1 14.1 14.4 13.8 13.9 14.3 11.5 

SDsic+SDsst 14.6 14.5 14.5 14.2 14.0 14.4 11.6 

M2 4.0 3.68 1.92 1.66 0.82 0.73 0.07 

 

Table 12: Impact of the OSISAF corrections in terms of the proposed metrics for filter 

combinations including SIC and SST terms only 
Filter Combo SSE+F3 SSE+F3+F5 SSE+F6 

% Removed 94.5 95.4 95.7 

SDSIC Remain 14.3 13.9 14.3 

SDsic+SDsst 14.5 14.0 14.3 

M2 1.80 0.77 0.68 

 

Table 13: Impact of adding the distance correction to the filter combination sequence used with 

OSISAF and assessment of the two filtering schemes introduced in Table 6 

 F5 F6 F6 revised 
Filter Combo DIS+F3 DIS+SSE+F3 DIS+SSE+F3+F5 DIS +SSE DIS+SSE+F6 DIS+SSErev+F6 

% Removed 99.5 99.5 99.5 91.3 99.5 99.8 

SDSIC Remain 12.2 11.8 11.8 10.8 11.8 11.8 

SDsic+SDsst 12.3 11.8 11.8 10.9 11.8 11.1 

M2 0.06 0.05 0.05 0.06 0.05 0.02 

 

 

5.2.3 Impact of the DMI Inconsistency Definition Index 

 

Here, we evaluate what happens if we apply a filter that eliminates all the SIC retrievals flagged 

by the DMI inconsistency index (i.e., SIC > 15% with SSTs > 3 °C).  The purpose of this 

comparison is to evaluate the impact of extending the definition of the DMI inconsistency set to 

the range 0 < SIC < 15% adopted in this study.  This is equivalent to considering a new filter 

SICmax = 15 %.  M1 and M2 metrics for the resulting filtered set are shown in Table 14.  Such a 

filter truncates 34.5% of the original SICCI inconsistency set considered here.  Although the 
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remaining set has a significantly lower M2 (0.56) than the original set, the corresponding M1 

metric is not consistent with the M1 values reported in Sections 5.2.1 and 5.2.2 (M1 = 5.9 (Table 

14) vs. M1~12 – 15 (Tables 7 – 13)).  Similar low M1 values were observed in the course of this 

investigation (not shown in the metrics evaluation tables) when the F5 correction was applied in 

isolation without the F3 filter (i.e., without an SSTmax requirement).  We, therefore, tested the 

impact of adding a temperature bound to the 15% SICmax filter.  We used the same SSTmax = 10 

°C threshold from before.  Table 14 indicates that additional filtering lowers the M2 even further 

to 0.24 with minimal additional truncation (the new threshold eliminates an additional 3.9%).  

The sum of the SDs (M1 = 4.5), however, is still significantly lower than the M1 results from 

before (Tables 7 – 13 indicate that the denoised inconsistencies have spatial variabilities 

representative of the sea ice edge region).  This discrepancy is perhaps due to the fact that the 

extended (non-overlapping) inconsistency set is literally contained in a box constrained by (SIC 

= 0%, SIC = 15%, SST = 3 °C, and SST = 10 °C), whereas in the proposed filtering scheme the 

denoised inconsistencies are bound by SIC-SST function given in Eq. 2.  In other words, the 

15% SICmax filter cuts the portion of the variability outside the ice edge (and in the process, 

lowers the SD of the truncated set), whereas the proposed filtering scheme allows for full 

variability in the MIZ (the SICs are truncated at 75% and SSTlim = f(SIC)).  The impact of 

allowing for full variability outside the ice edge can be appreciated in Figs. 23 and 24, showing 

the changes in distribution after each filter application.  Although the filtered sets shown in these 

figures have the highest density of inconsistencies (yellow-blue hexbins) within the bounds of 

the non-overlapping SIC domain (0%, 15%), there is a significant number of potentially valid 

SIC retrievals (red bins) with intermediate and high concentrations.  By removing all SIC > 15%, 

this filter not only eliminates potentially valid observations in the MIZ, but also removes an 

important contribution to the SD from the truncated concentrations.  A successful denoising 

algorithm should achieve both noise reduction and feature preservation.  

 

Table 14: Impact of the DMI inconsistency filter 
SIC Product SICCI OSISAF 
Filter Combo DMI remain DMI+SST DMI remain DMI+SST 

% Removed 34.5 96.1 42.9 96.5 

SDSIC Remain 4.3 4.3 4.2 4.3 

SDsic+SDsst 5.9 4.5 5.2 4.6 

M2 0.56 0.24 0.57 0.36 

 

 

5.3. Impact of the filters on the joint pdf of SIC vs. SST and SIC vs. SSE for the de-noised 

data 

 

A final assessment of the filtering schemes just proposed is done in terms of the joint probability 

density functions for the fraction of data that remain unaffected after all the filters are applied.  It 

is not the purpose of this investigation to characterize these distributions.  We will dwell no 

further than a visual inspection to check if the de-noised data sets have distributions with similar 

shapes for both SIC products, as noise reduction algorithms always tend to alter the signal being 

de-noised to some degree.  The assumption is that the remaining sets are, in fact, valid SICs, but 

there is always the possibility that undetected false or noisy retrievals still persist because they 
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result from sources other than the ones being addressed by filter design or because the selected 

thresholds may not match the distribution of the noise.   

 

The joint densities of SIC and SST, ƒ(SIC, SST), and SIC and SSE, ƒ(SIC, SSE), for the 

untouched data by the F5- and F6-filter chains, are shown in Figs. 21 and 22 for SICCI and 

OSISAF, respectively.  The SIC vs. SST dependence is characterized by an elliptical joint 

distribution where the isocurves (curves of constant density) adopt ellipsoid shapes.  This type of 

distribution allows for the presence of heavy tails, as in the scatter plots of SIC vs. SST (Fig. 15) 

or in the marginal distributions for SIC and SST (Fig.13).  Despite the presence of tails, the 

distribution remains a simple linear dependence structure (i.e., the linear correlation remains the 

canonical measure of dependence between the two variables).  If we compare the ƒ(SIC, SST) 

for the de-noised sets with the joint distributions of the original inconsistency sets shown in Fig. 

14, it can be seen that the shape of the functional dependence between SIC and SST  remains 

invariant under the increasing transformation of the inconsistencies resulting from the sequential 

filters.  The transformation after each filter is broken down in Figs. 23 and 24 for ƒ(SIC, SST) 

for SICCI and OSISAF, respectively.  The isocurves in the final distributions are somewhat 

distorted compared to the ellipsoids in Fig. 14, but the underlying population sizes have shrunk 

considerably as a result of the filtering.  

 

The shape of ƒ(SIC, SSE), before (Fig. 14) and after the filters (Figs. 21 and 22), is something 

else entirely. The ƒ(SIC, SSE) transformation after each filter is also broken down in Figs. 25 

and 29 for SICCI and OSISAF, respectively.   The joint densities of ƒ(SIC, SSE) for the de-

noised (F5 and F6) SICCI sets (Fig. 21) show similar increasing linear trends that are in 

agreement with the smearing standard uncertainty parameterization used with all the 

EUMETSAT SIC products, as depicted in Fig. 3 of Tonboe et al. (2016).  In that model, SSE = 

0% for SIC = 0% and 100%.  Inside the ice edge, SSE = ƒ(SIC) with SSE increasing linearly 

with SIC and reaching a maximum for SIC ~10%.  Inside the MIZ, SSE remains constant with 

increasing SIC (SSEmax ~12%) until about SIC ~90%, when it decreases back to 0% for SIC = 

100%.  The shape of ƒ(SIC, SSE) for SICCI shows very good agreement with the theoretical 

model, except for a much greater SSE constant inside the MIZ (~ 29 – 33%, as by construction 

of the SSEmax threshold used in F4).  The OSISAF distributions (Fig. 22), on the other hand, 

appear to increase smoothly over a larger range (SIC ~15%), but the rate of increase is no longer 

linear.  A similar curvature was also observed in the OSISAF marginal distribution for SSE (Fig. 

13).  Thus, despite the differences in ƒ(SIC, SSE) between the original inconsistency set and the 

de-noised F5 and F6 OSISAF sets, the latter, at least, bear some degree of similarity with the 

marginal density for SSE, following the suppression of the spikes shown in Fig. 13 after 

application of F4.  This is relevant because all marginals (univariate pdfs) of an elliptical joint 

distribution are also elliptical with the same characteristic generator, i.e., with the same tail 

function (Bradley and Taqqu, 2003).  In other words, distributions with the same tail function 

belong to the same elliptical family.  This can be corroborated in Fig. 27, showing the overlap of 

the marginal distribution for SICCI (pink pdf) and OSISAF (blue)’s F6-unaffected SIC 

retrievals, where the tails of both products agree rather well for SIC > ~25%.  The equivalent 

plot for F5 is visually undistinguishable from the F6 chain, and hence not shown here.  The fact 

that the tails are converging is encouraging, but the curvature in ƒ(SIC, SSE) revealed in Fig. 22, 

suggests that there is residual noise in OSISAF, not present in SICCI, that is not being detected 

by our filters.  We speculate that the departure from linearity in the OSISAF SIC – SSE 
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dependence in open water is somehow related to the smoothing impact of the 3x3 SIC operator, 

used in estimating the local smearing variability at the ice edge, in an already smooth product 

with over-smeared edges (see the discussion in Section 3.2). 

 

A closer look at the differences between the OSISAF and SICCI pdfs shown in Fig. 27 helps 

clarify this issue.  Note that for SIC < 10%, the SICCI pdf exhibits a sharper density peak than 

OSISAF’s.  However, between 10% and ~25%, OSISAF displays higher SIC densities than 

SICCI, showing a secondary peak centered at ~15% SIC.  The exactness of these thresholds is 

indicative that the differences in the pdfs at low concentrations are the result of artifacts in the 

open water filter (OWF) used in UMETSAT’s version 2 SIC products.  The OWF is designed to 

remove spurious SIC retrievals in open water and low concentration areas affected by 

atmospheric influences.  Lavergne et al. (2019) explain that the value of 10% is chosen well 

below the ice edge threshold (SIC = 15%), so the filter does not interfere with sea ice extent 

evaluations (15% – 30% SIC).  Remaining noise from deficiencies in the OWF (e.g., from 

atmospheric influences not considered such as LWC), however, transfer into uncertainty in SIC 

(Lavergne et al., 2019). 

As we well know, the atmospheric correction, hence the OWF, has more impact over open-water 

and low-concentration values than over closed-ice conditions (Andersen et al., 2006; Lavergne et 

al., 2019).  From our analyses, filters based on SSE have the greatest impact on ice edge artifact 

detection, hence our filter F4 overlaps with the OWF spatial domain.  Since these two filters are 

correlated, we look at the SSE density distributions to infer something else about the OWF.  The 

joint pdfs for ƒ(SIC, SSE) suggest that the 10% threshold of the OWF works well for SICCI 

(Fig. 21) but not so much for OSISAF (Fig. 22).  Note from Fig. 21 that SICCI reaches SSEmax 

within SIC < 10%, whereas in OSISAF the increasing trend between SIC and SSE expands 

beyond the 10%-OWF threshold, peaking around SIC= 15% (Fig. 22).  This implies that the 

OWF leaves a significant number of noisy OSISAF retrievals untouched inside the ice edge 

(those with SICs between 10 and 15%).  We hypothesize that these unscathed noisy SIC 

retrievals remaining in OSISAF are responsible for the secondary peak, centered at the ice edge 

threshold (SIC =15%), evident in the SIC pdf (Fig. 27) for the OSISAF de-noised data.  These 

inconsistencies should have been masked out by our SSE filter, but stayed untouched by F4.  The 

question is why F4 failed to detect and eliminate OWF-residual noise.  The most obvious answer 

is that the selected thresholds for SSEmax and SSEmin do not match the distribution of the 

undetected noise. 

As we discussed in Section 3.2, we believe that the SSE is severely underestimated for the OSI-

450 CDR.  We know that the averaging incurred in resampling the satellite swath (level 2) SIC 

retrievals onto a grid (level 3) of finer resolution than the footprint of the channels used in the 

retrieval, smooths and smears the gridded OSISAF product by default.  This smearing is 

independent of the OWF applied at level 2, but has a significant impact in the computation of the 

OSISAF smearing uncertainties at the pixel level.  The smearing uncertainty algorithm is a 

convolution of the level 3 gridded SICs with a 3x3 high pass filter (edge-enhancement operator).  

This convolution brings the value of each pixel into closer harmony with the values of its 

neighbors, causing additional blurring/smearing of the gradients at the sea-ice edge region in the 

OSISAF product, which in turn results in underestimation of the SSEs distributed with the level 

3 OSISAF product.  The SICCI product, on the other hand, being based on higher-frequency 

channels, achieves higher spatial resolution, thus the ice edge is more sharply defined in the SIC 
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grid cells, resulting in higher SSE pixel estimates as the uncertainty algorithm return larger 

uncertainty estimates where the gradients are stronger.  

The fact that the SSE might be seriously underestimated for OSISAF suggests that the threshold 

choices for SSEmin and SSEmax used in F4 (i.e., SSEmin = 3% and SSEmax = 37%) should have been 

more aggressive than even the ones used with SICCI (i.e., SSEmin = 3% and SSEmax = 33%).  As 

we discussed above, the joint pdfs for OSISAF’s ƒ(SIC, SSE), shown in Fig. 22 for F5 and F6, 

indicate a departure from linearity (curvature) that extends to ~14 – 16% SICs.  We also 

commented on the fact that the tails of the SIC pdfs for both CDRs converge for SIC > 25% (Fig. 

27).  Using these observations as a guideline to choose the more aggressive SSE thresholds, we 

reevaluated the OSISAF filtering using the F6-chain but with a new F4-filter that had revised 

thresholds: SSEmin = 14% and SSEmax = 25%.  A comparison of the new OSISAF SIC pdf and 

the previous one for SICCI is shown in Fig. 28.  As can be seen from this inter-comparison, the 

secondary peak in the new OSISAF pdf has been eliminated as a result of the revised thresholds 

in the F4 filter.  The smoothness of the new OSISAF pdf also reflects the smearing inherent in 

the OSIAF level 3 product.  As for ƒ(SIC, SSE), Fig. 29 reveals that the joint density for the 

truncation resulting from the revised filter does, indeed, show linearity between SSE and SIC 

inside the 10% SIC-range prescribed in the smearing uncertainty parameterization of Tonboe et 

al. (2016) that matches the ƒ(SIC, SSE) for SICCI given in Fig. 21. 

Despite small differences in the smoothness of the isocurves, the joint distributions for the 

filtered (F6)-transformed data from OSISAF (Fig. 29) not only display the same SIC-SST and 

SIC-SSE features of the SICCI dependences (Fig. 21), but the shape of those features matches 

the expected behavior from the theoretical model exceptionally well.  Note, however, that to 

guarantee linearity between SIC and SSE for SIC < 10% in OSISAF, the SSE thresholds have to 

be changed from 3 to 14% for SSEmin and from 37 to 25% for SSEmax.  The individual impact of 

the revised F4 filter is shown in Table 11.  The tabulated results confirm that the new SSE 

thresholds have a significantly larger impact at reducing noise; thus, they are a better match for 

the distribution of the underlying noise.  Metrics for the F6 filtering scheme using a F4 with the 

stricter selection criteria (Table 13, F6 revised) are: M1 = 11.1 and M2 = 0.02 at a cost of 

removing 99.8% of the original inconsistencies.  The remaining 0.2% of the original set of 

inconsistencies is still a good-sized population with 439666 valid SIC retrievals salvaged (the 

original set is close to 88 million-large for OSISAF).  Comparing these values with the metrics 

for the F6 filtering scheme using F4 with underestimated SSE thresholds (Table 13, F6), it is 

evident that the removal of the additional noise from the OWF brings the M2 metric ever closer 

to zero, which implies that, from a statistical point of view, the new F6-chain outperforms all the 

others.  Results for the F5-chain are almost identical, so we can finally settle in one or the other, 

and we have chosen F6 just because it has one less filter in the chain.  In summary, the proposed 

filters, while successful at eliminated noise, have also returned denoised signals that belong to 

the same elliptical family, i.e., are identically distributed, regardless of the SIC product 

characteristics. 
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Figure 18.  Scatter plot of SIC vs. SST for SICCI showing the parameter space of the SIC 

inconsistencies cut off by different filters. Top-left: green dots are SIC with DIS < 50 km (F1); 

top-right: red dots are SIC > 75% (F2) and yellow dots are SIC with SST > 10 °C; middle-left: 

red dots are SIC with SSE < 3%; middle-right: orange dots are SIC with SSE > 33%; bottom-

left: cyan dots are SICs preserved by the F5 filter; bottom-right: purple dots are SICs preserved 

by the F6 filter. 
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Figure 19. July 2014 – MVC for SICCI SIC inconsistencies after sequential application of 

different filter combinations 
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Figure 20. July 2014 – MVC for OSISAF SIC inconsistencies after sequential application of 

different filter combinations. 
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Figure 21. SICCI joint pdfs for filtered SIC vs. SST (left) and SIC vs. SSE (right) for F5 (top) 

and F6 (bottom) final filtering schemes. 

 

 
Figure 22. OSISAF joint pdfs for filtered SIC vs. SST (left) and SIC vs. SSE (right) for F5 (top) 

and F6 (bottom) final filtering schemes.   
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Figure 23 Hexbin density plots (counts per hexbin) of the SIC-SST dependence on truncated SICCI inconsistency 

sets after a new filter is applied.  Top-left plot corresponds to the original inconsistency set. Next-right: F1-filtered 

set; row 2-left: F1-F2-filtered set; row 2-right: F1-F2-F3 filtered set; row 3-left: F1-F2-F3-F4 filtered set; row 3-

right: F1-F2-F3-F4-F5 final set. Last row is for the final sets that remain after F6 filtering sequence, F1-F2-F4-F6.  
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Figure 24. Hexbin density plots (counts per hexbin) of the SIC-SST dependence on truncated 

OSISAF inconsistency sets after a new filter is applied.  Top-left plot corresponds to the OSISAF 

unfiltered data; top-right plot is for the F1-filtered set; middle-left is for the F1-F3 truncated set; 

middle-right is for the F1-F3-F4 truncated set; bottom-left plot is the final set from F1-F3-F4-F5, 

and bottom-right plot is the final set from F1-F4-F6 chain.  
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Figure 25. Bin density plots for SICCI SIC vs. SSE dependence after each filter is applied 

sequentially, starting with a.) no filter, b.) F1, c.) F1+F2, d.) F1+F2+F3, e.) F1+F2+F3+F4, d.) 

F1+F2+F3+F4+ F5 
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Figure 26. Bin density plots for OSISAF SIC vs. SSE after each filter is applied sequentially, 

starting with a.) no filter, b.) F1, c.) F1+F3, d.) F1+F3+F6 
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Figure 27. Overlap of the SICCI and OSISAF pdfs for the de-noised set that remains after the 

F6-chain filter application on the inconsistencies. Pink pdf is for SICCI and blue pdf is for 

OSISAF. 

 

 

 

 
Figure 28. Overlap of the SICCI and OSISAF pdfs for the de-noised set that remains after a new 

F4 filter with more aggressive SSE thresholds is considered in the F6 chain.  Pink SIC pdf is for 

SICCI and blue SIC pdf is for OSISAF. 
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Figure 29. OSISAF joint pdfs for filtered SIC vs. SST (left) and SIC vs. SSE (right) for the F6 

final filtering scheme after the intermediate F4 filter is updated for more aggressive SSE 

thresholds (i.e., SSEmin = 14% and SSEmax = 25%).   
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6. Conclusions 

 

In this investigation, we have explored the potential benefits of using an independent SST 

product to perform post-processing quality control on the EUMETSAT OSI-450 and SICCI 25-

km SIC CDRs.  As CDRs, the SIC products have already undergone a battery of corrections as 

part of their processing chain with ensuing estimates having low sensitivity to atmospheric noise 

including water vapor and to surface noise including wind roughening of the ocean surface, and 

variability of sea-ice emissivity and temperature.  Estimates are never perfect, however, as there 

is always some unresolved uncertainty.  The additional quality control is then to identify and 

correct for residual noise and spurious values in the retrieved SIC.  The concept behind this idea 

of using an independent SST product to diagnose potentially wrong or incorrect SIC pixels, is 

that SIC and SST are predominantly dependent on different microwave frequencies and thus, 

have uncorrelated error sources.  Hence, they can be used to mutually identify noisy or erroneous 

retrievals in the other, as long as the errors are introduced by one of the uncorrelated sources.  

The reference SST product of choice is the level 4 OSTIA 5 km-SST, which is retrieved 

independently from the EUMETSAT SIC CDRs.  A common database of SIC and SST products 

have been created to facilitate these comparisons, in which the SIC products have been 

resampled to the same resolution of the SSTs.   

As a first step, we extracted a subset of Arctic SIC data suspected of having residual noise or 

spurious values based solely on the fact that they corresponded to elevated SSTs.  This set, 

termed the inconsistency set, was defined as: SIC > 0% with SST ≥ 3 ºC.  Implicit in this 

selection criterion is the fact that the pixel should be partially covered with ice, so that the 

matching SST pixel has a surface temperature value associated with it.  Hence, the inconsistency 

set is made entirely of mixed ice-water pixels, but in this application the two surfaces in the 

mixed pixel are treated independently.  The size of the resulting inconsistency set was ~88 

million and ~10.5 million for OSISAF and SICCI, respectively, for an entire year of matchups 

(in this case, 2014).  Standard deviations for these two sets were 14% and 17%, respectively.  

These statistics are rather high, so this is supporting evidence that the inconsistency set has a 

large degree of spread and variability, and hence, it is dominated by unresolved noise.  The 

overarching question of this investigation is, which retrievals from the inconsistency set are valid 

and which are noise or spurious values.   

Maps of the geographical location of the inconsistencies reveal that SIC retrievals meeting the 

inconsistency criterion happen mostly at the beginning of the seasonal loss-of-ice period (June, 

July, and August) and are constrained to the ice edge, the coastal zones and the subpolar 

marginal seas, especially the Baltic Sea, the Canadian Arctic Archipelago, and the Sea of 

Okhotsk.  In other words, the SIC inconsistencies are a phenomenon of the sea-ice boundary 

region, whether at the sea-ice edge in open waters or in coastal areas with retreating ice (first-

year ice) during the melting season.  This is a challenging set to work with because estimated 

uncertainties are the largest (as high as 40%) precisely at the ice edge in the summer time.  The 

location and timing of the inconsistencies immediately points to atmospheric influences at open 

water and low ice concentrations and land-ocean spillovers as the most likely culprits of many of 

the spurious SIC inconsistencies.  SIC retrievals are most sensitive to atmospheric noise at low 

ice concentrations and open water conditions and a significant portion of the SIC uncertainty is 

due to shortfalls in the atmospheric correction.  
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The method used for diagnosing valid and noisy SIC retrievals is simple.  We use a split sample 

approach based on selected thresholds for variables identified as being related to the sources of 

the uncertainty.  Below those thresholds, SIC inconsistencies are determined to be acceptable 

and are left untouched.  Above the threshold, the SICs are determined to be spurious or noisy and 

are removed from the inconsistency set.  Thresholds are selected based on scatter plots of SIC vs. 

SST, and from localized discontinuities in the marginal pdfs of the diagnostics variables showing 

correlation with the sources of the uncertainties.  The impact of splitting the set into acceptable 

and noisy retrievals is evaluated using metrics based on the joint dependence of SIC and the SST 

as well as the overall geographical distribution of the retained values.  The metrics include the 

combined standard uncertainty of SIC and SST, and an “energy conservation” type metric for 

mixed SIC-SST pixels within the MIZ in which an increase in pixel ice concentration should be 

balanced out by a decrease in SST and, vice versa, an increase in SST should have a 

corresponding pixel with a decreased ice concentration.  Since the inconsistency sets are not 

normally distributed, the standard deviation is just a measure of the dispersion (spread and 

variability) of the data itself.  As the acceptable set gets smaller and smaller with sequential 

thresholds moving more and more of the rejected pixels to the noisy set, the dispersion of the 

filtered data set should be reduced as part of the noise elimination process.  As for the 

conservation metric, if the thresholds succeed at eliminating mixed pixels for which the SIC and 

SST retrievals are out of balance, the metric should approach zero.  A successful metric should 

be sensitive to small changes that result from the thresholds used in the filtering process.  

Our results indicate that false ice retrievals in the inconsistency set can be traced back directly to 

issues related to the atmospheric and land spillover corrections and to scaling effects on the 

retrieved smearing uncertainties at the pixel level resulting from resolution issues and 

interpolation artifacts when resampling over multiple scales.  That the uncertainty of the 

inconsistency set can be explained in part by unresolved atmospheric and land contamination 

influences is not surprising since these two sources of uncertainty have the greatest impact over 

open waters and at low sea ice concentrations during the summer, which is precisely the 

temporal and spatial domain of the SIC inconsistencies.  Additionally, the one aspect where the 

synergy between SIC and SST has the greatest impact in identifying disguised residual noise is 

by revealing flaws/shortcomings in the other product’s atmospheric correction algorithm.  SSTs 

are retrieved at lower frequencies that SIC where the atmosphere is more transparent and sources 

of error such as LWC have less impact for the SSTs.  A complicating factor is that unresolved 

errors in the inconsistency set may result from combinations of these three uncertainty sources as 

they share the same spatial and temporal domain.  In other words, these errors may be correlated. 

 

Resampling and interpolation artifacts should not be unexpected either as the products undergo 

multiple scaling transformations during the processing chain, from about 70 km and 30 km for 

level 2 OSISAF and SICCI to 25 km and 5 km gridded products.  These artifacts affect the SIC 

CDRs through their uncertainty estimates, as these respond to the strength of SIC gradients near 

boundaries, especially at the sea ice-water edge where the interpolation artifacts also occur.  

Maps of gridded smearing uncertainties display strong gradients as they sharply decrease from 

their maximum value of ~40% inside the ice edge to 0% at the adjacent open waters.  

Interpolation effects interact with the smearing algorithm in two ways.  When there are blocking 

artifacts, which result from resampling mixed pixels to resolutions finer than that of the actual 

observations, many of the subpixels are assigned replicated values corresponding to the coarse 

grid cell, smearing the zero-boundary into the open water regions.  The misclassified pixels 
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outside the 0%-SIC boundary will then have minimum detected SICs (SIC > 0%) with SSE = 0% 

(the open water value).  

 

The smoothing nature of the 3x3 operator of the smearing uncertainty algorithm results in the 

underestimation of the uncertainties, especially for OSISAF.  Since the OSISAF product at 25 

km resolution has smeared edges resulting from gridding the level 2 SIC retrievals, it has less 

dynamic range at the edges compared to SICCI; thus, the low pass filter in the smearing 

uncertainty model returns smaller smearing uncertainties for the level 3 OSI-450 product than for 

the 25 km SICCI, which has sharp ice edge gradients.  Therefore, the SSE estimates distributed 

with the level 3 OSISAF product are most likely underestimated in gradient regions.  When the 

products are resampled from 25 to 5 km, the interpolation has a different impact on the provided 

SSE estimates, with the product having the strongest SSE intensity gradients being smeared 

across larger neighboring areas away from the ice edge than the product whose pixels have less 

SIC contrast (i.e., the spatial distribution of SSEmax is greater in the 5-km SICCI than 5-km 

OSISAF).  These two interpolation effects manifest themselves in the SSE marginal pdf with 

both products showing spikes at both ends of the distribution.  We reduce noise introduced by 

interpolation effects by using thresholds for SSEmin and SSEmax. 

 

The smearing of the uncertainty estimates with spatial scale also appears to have repercussions 

when trying to remove noise left behind by the open water filter used in the CDR’s atmospheric 

correction.  As Lavergne et al. (2019) explain, “the role of the OWF is to detect and remove 

weather-induced false sea ice over open water while ideally preserving the true low-

concentration values (typically at the ice edge).”  The OWF is based on a threshold that is 

dynamically tuned to preserve true SIC values down to SIC = 10%.  The water-ice separation 

limit at 10% SIC is chosen to ensure that the sea ice extent, defined at SIC = 15%, is not 

influenced by the OWF and only by the evolution of true SIC.  Monthly mean time series of 

minimum detected SICs that are preserved by the OWF (Fig. 9 in Lavergne et al. (2019)) 

indicate that both products peak to 10% SIC in summer, well below the 15% threshold for the 

sea ice extent.  The pdfs for the denoised inconsistency sets after all the thresholds under 

consideration were applied, however, revealed an additional peak between 10% and 20% SIC in 

the OSISAF pdf with a maximum at 15% SIC.  This secondary peak in the OSISAF SIC 

distribution indicated the presence of undetected false ice concentrations beyond the 10% water-

ice limit of the OWF implemented with current CDRs.  It is safe to assume that the undetected 

false SICs in OSISAF are most likely the result of residual atmospheric contamination.  

Simulations of the change in smearing uncertainty with grid resolution (Tonboe et al., 2016) 

indicated that the OSISAF smearing uncertainty changes from 6% at 50 km to 9% at 25 km to 

15% at 5 km resolution grids.  This is consistent with the SIC vs. SSE dependences observed 

with the 5 km-inconsistency set, with OSISAF showing increasing SSE = ƒ(SIC) up to 15%, 

whereas with SICCI, the SSEs were uniform after just 10% SIC.  The OSISAF SSE vs. SIC 

increasing trend at low concentrations not only displayed a wider concentration range than 

SICCI, but also a departure from the (expected) linearity in the SIC vs SSE dependence observed 

with SICCI.  This nonlinearity is another indicator of remaining dependences in the OSISAF 

denoised set.  Since 1) we use SIC smearing uncertainties as thresholds to reduce noise along sea 

ice boundaries introduced by the downscaling of mixed pixels, and 2) our initial smearing 

thresholds failed to detect the residual atmospheric dependencies in OSISAF evidenced by the 

SIC pdf and joint pdf of SIC and SSE for the denoised set, then the implication is that the SSEmin 
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and SSEmax thresholds used in the preliminary noise elimination filters did not match the 

distribution of the signal and noise components for OSISAF at the 5-km resolution grid.  This 

misrepresentation of the SSE thresholds most likely resulted from neglecting to take into account 

the underestimation of the OSISAF uncertainties at finer spatial scales.  Similarly, the 

underestimation of the OSISAF uncertainties at fine spatial scales results in nonlinear structures 

in the SIC vs. SSE dependence at low concentrations that expand the extent of the ice edge (i.e., 

beyond 10% SIC ice-water threshold).  The OSISAF product, therefore, requires larger 

uncertainty bounds to eliminate downscaling edge effects at 5 km grids.  Since these effects were 

only observed in OSISAF, thresholds based on SIC uncertainty (e.g., SSEmin and SSEmax) should 

be more aggressive in OSISAF resulting in a much narrower uncertainty range for the true 

smearing uncertainties than in SICCI.  After implementing new SSE thresholds, the non-linear 

structures in the SIC-SSE dependence were no longer discernible in the joint pdf, giving 

credence to our suspicions that the OSISAF uncertainties are indeed underestimated. 

 

The proximity to land influenced the inconsistency set in different ways: as false SIC retrievals 

resulting from land-to-ocean spillovers; i.e., open water pixels mistakenly classified as ice, and 

as overestimated SIC retrievals as when the ice started to retreat from the coasts; i.e., a pixel with 

intermediate ice concentrations and mild SSTs appears to be compacted ice.  The former effect 

was dominant in OSISAF while the latter effect only impacted SICCI.  The SIC CDRs undergo 

extensive corrections for land contamination.  Since spurious SICs due to land spillovers are 

more numerous in OSISAF, perhaps they are the result of geolocation errors or larger sidelobes 

in SSM/I.  Although geolocation errors can be significant along the ice edge and coastlines, their 

contribution is not included in the sea ice concentration uncertainty estimate (Tonboe et al., 

2016).  Thresholds for a minimum distance-from-land requirement and a maximum SIC within 

the MIZ were implemented to eliminated SIC retrievals affected by land contamination.  

 

False SIC retrievals influenced by the atmosphere manifested themselves in two different ways 

in the inconsistency set.  In the first case, we found significant numbers of summer, open-water 

pixels misclassified as ice in subpolar arctic seas (e.g., The Baltic Sea and Sea of Okhotsk) 

showing corresponding SSTs in excess of 20 ºC.  We speculate that these spurious retrievals are 

directly linked to the presence of dense clouds with high LWC responsible for thunderstorms and 

heavy rains to these basins during summer months.  Even though the microwave atmospheric 

correction is not representative of atmospheric conditions corresponding to cloudy atmospheres, 

a proxy correction can be obtained from the synergism between the SIC and SST by simply 

imposing a maximum SST criterion for SIC retrievals in the MIZ.  This type of error impacted 

both products in equal measure.  Since this type of error affected pixels in open waters far from 

the coast where there were no strong gradients/fronts, there was nothing in the associated 

uncertainties to indicate that these pixels were affected by uncorrected atmospheric effects, 

unlike the pixels near the ice edge and along coastal margins described above in connection with 

the OWF.    

 

The final threshold that tied all these multiple criteria that had to be met was based on the SIC vs. 

SST dependence.  Scatter plots of SIC inconsistencies vs. matching SSTs reveal a well-defined 

pattern of behavior in which increases in SIC are accompanied by decreases in SST and, vice 

versa, large temperature increases are only possible for areas with low ice concentration.  A 

mixed coarse resolution pixel corresponding to the microwave BTs can have only a finite range 
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of allowable SIC and SST values.  By devising a parametric function that describes the joint 

variations of SIC and SST within the MIZ, we seek to preserve the features of the SIC-SST 

dependence, while eliminating false SIC retrievals; i.e., we avoid allowing densely sampled 

regions within the ice edge to dominate the results, while simultaneously allowing for the full 

range of variability in the SDs.  This aspect is important as the inconsistency set is not sampled 

randomly, but is more densely populated around the confines of the ice edge.  Note that the 

precise functional dependence will also be a function of the product resolution.  The “energy 

conservation” metric that looked at the continuity of the joint variations of SIC and SST proved 

to be remarkably sensitive to changes introduced by the thresholds.  Not surprisingly, the impact 

of the noise reducing filters in descending order of “impactfulness” according to the conservation 

metric was for thresholds based on SST = ƒ(SIC), distance-from-land and SSE for SICCI, while 

the order for OSISAF was distance-from-land, SST = ƒ(SIC), and SSE.  While most of the 

inconsistency set ended up being rejected by the filters, the data that remained in the valid set 

exhibited patterns in the distributions consistent with the theoretical expectations.  The 

alternative metric considering the combined SD for SIC and SST was not so successful, but it 

gives confirmation that using the synergy of the retrievals, can improve the accuracy of both 

products.  It also confirmed that the variability in the ice edge is dominated by SIC and not the 

SST.  The SDs for the valid, denoised sets were 12% and 15% for OSISAF and SICCI, 

respectively.   

 

In summary, exploiting the synergy between SIC and SST proved to be a good diagnostic tool to 

identify and reduce uncertainty due to unaccounted atmospheric influences, land contamination 

and interpolation artifacts.  Not only does SST provide a simple solution to the elusive LWC 

correction, but it does so without introducing additional trends of its own.  Quite the opposite, 

the SSTs also benefit from this synergy as they also get denoised in the split processes with the 

SST set corresponding to the valid SIC retrievals having SD ≈ 0 ºC.  It is by happenstance that 

the evaluation of the SIC inconsistencies devolved into a validation of the SIC uncertainties.  Our 

studies show that the estimated uncertainties in the SIC CDR products are designed with the ice 

edge in mind, but they underestimate changes in the uncertainties themselves as a result of 

scaling and spatial resolution issues associated with delivering a high-resolution product from a 

coarse resolution sensor.  Resolution issues appear to have a significant impact in the OSI-450 

uncertainty estimates delivered with the gridded products.  Additionally, because the smearing 

uncertainty algorithm is designed to respond to the presence of strong gradients, if the source of 

error introducing uncertainty happens in open waters (e.g., errors associated with retrievals under 

wet, dense clouds, precipitation or strong winds, which can happen anywhere in the ocean), the 

smearing uncertainty algorithm will not be able to cover these atmospheric contributions.  This is 

the case with false SIC retrievals in the Baltic Sea during the summer, detected via SST synergy, 

when LWC can have a significant impact on the 37 GHz.  There was nothing in the associated 

uncertainties to indicate that these were questionable SIC retrievals.  Consequently, the 

uncertainty model has functional form misspecification, as it considers all the explanatory 

sources of error but fails to account for all the relationships between them and potential 

outcomes. 

 

The noise reduction filters tested here can be easily implemented in a binary quality control mask 

where different bits are set based on the thresholds, such that educated users can decide whether 

to use flagged inconsistencies.  It would be best, however, to try to use the SIC-SST synergy in 
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the atmospheric correction directly at the brightness temperature level.  The SICCI-50 km 

already uses the 6 GHz channel, and there is an RTM in place as part of the atmospheric 

correction, so incorporation of the SST as part of the RTM atmospheric correction should be 

straightforward.  Besides, an improved atmospheric correction that takes into account regional 

atmospheric effects for selected geographical regions would be highly beneficial for improving 

the overall accuracy of the SIC retrievals.  A post-processing pan arctic filter based on a 

threshold for SSTmax, as the one proposed here, eliminates enormous amounts of data just to 

guarantee that there are no anomalous SIC in the Baltic Sea and Sea of Okhotsk during the 

summer.  It is plausible that the SSTmax threshold is masking out valid subpolar SIC retrievals 

with slightly higher SSTs that are not impacted by the atmosphere in the same way it affects 

these two specific regions.  The pdf for OSISAF’s associated SSTs (Fig. 13), for instance, 

suggests valid SSTs up to ~12 – 15 ºC.  Truncating valid SSTs above SSTmax = 10 ºC outside the 

Baltic Sea and Sea of Okhotsk might negatively impact estimates of ice retreat based on the 

maximum SST for the summer (e.g., Steele and Dickinson, 2016) and regional weather forecasts 

from NWP models that assimilate both SIC and SST.  

 

A final recommendation is that future matchup data sets, created with the purpose of noise 

identification, avoid converting resolutions to such fine scales.  The 25-km SICCI and OSI-450 

products can be directly compared to the OSTIA level 4 SST 0.25º x 0.25º resolution product 

without incurring in additional regridding and thus minimizing smearing of spurious retrievals at 

the sea ice – water boundaries (atmospheric influences) and coastal regions (atmospheric and 

land contamination).  If additional downscaling is required, edge detection interpolation 

techniques that cause little blurring of edges should be used instead. 
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