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1.- Objective  
 
The objective of this associated scientist project is to inter-compare the sea ice concentration from 
microwave radiometers, for winter and autumn period, at low microwave frequency to current OSI 
SAF sea ice concentration products, in particular: the OSI-401 based on SSMIS data and the OSI-408 
based on AMSR data along the lines of the sea ice concentration intercomparison described by 
Ivanova et al. (2015). New algorithms recently developed in the ESA CCI project (Clime Change 
Initiative) and published in the OSI-450 CDR will be included as well. Therefore, the activity is also 
of interest to the OSI-409/OSI-409-a and the OSI-430 and OSI-450 which are climate data records 
(CDR).  
 
It has been demonstrated that sea ice concentrations derived from low frequency microwave 
radiometer data has a low noise level, during summer, over open water from the atmosphere and 
over ice due to low ice surface emissivity variability (Ivanova et al. 2015, Gabarro et al. 2017).  This 
is also true during summer melt. However, low frequency channels have coarse spatial resolution 
and at L-band there is an ambiguity between sea ice concentration and the thickness of thin ice. 
Further the continuity of L - and C - band radiometers in space is uncertain.  
 
The ESA sea ice concentration round robin data package (RRDP) will be used as an independent 
reference in the intercomparison and for analysing the algorithms at fixed tie-points. 
Recommendations are given on the evaluation methodology itself as a contribution to the 
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discussion on the development of the OSI SAF monitoring and validation procedure. 
 
The main difference with respect to the work done in the previous AVS - 16-03 is that the previous 
one was specifically focused on summer period, and had the objective to improve the selected 
region used by OSISAF method to determine the 100% ice tie points.  
 
The objective of this proposal is to investigate and compare the low frequency algorithms with the 
current sea ice concentration algorithms and the algorithms developed in the ESA CCI project and 
which may be future OSISAF algorithms. 
 
Tasks and methods 
 

 Set up software to inter-compare the different sea ice concentration products for a selected 
period (autumn and winter period). 

 As a reference and independent measure each of the products will be compared to the ESA 
round robin data package (RRDP). 

 Collocate the different products and compute statistics. 

 Comparison of SIC computed with new algorithms using 6 GHz radiometer band proposed 
by L. Toudal (personal communication) and Thomas Lavergne.  

 Compare results with the SMOS SIC algorithm proposed in Gabarro et al 2017. 
 
 
The Scientific analysis has been divided in different parts: First a comparison of the different 
algorithms just in regions of high SIC is exposed. Then an analysis of the random error of the 
different algorithms is presented. An analysis of the systematic errors is performed to determine 
the spatial biases observed during winter. Finally, a sensitivity analysis of the different SIC algorithm 
to the temperature in the snow-ice interface, the snow depth, ice thickness and air temperature is 
presented. 

2.- Data Set Used 

The RRDB data base is used. The files from the RRDP SICCI-RRDP-V1_1 have been used for year 2007-
2011, and 2013- 2015. Take into account that 2007-2011 uses AMSR-E while the rest uses AMSR-2. 
This data file contains collocated AMSR data with other satellites data, models and in situ 
measurements. The files used are:   

1.- The data from the file called SICCI-RRDP-ASCAT-vs-AMSR-vs-ERA-vs-DTUSIC1-200X-N.text has 
been used. It contains TB from AMSR (all bands) collocated with high sea ice concentration pixels 
identified by DTU analysis from SAR data. ASCAT and ERA atmospheric data are also collocated. 
Used in section 4. 

2.-  The data from the file called SICCI-RRDP-ASCAT-vs-AMSR2-vs-ERA-vs-IMBCRREL20XX.text  has 
been used. It contains TB from AMSR (all bands) collocated with temperature profile data from IMBB 
profilers. ASCAT and ERA atmospheric data are also collocated. Used in section 6. 

 



5 

 

3.- AMSR-2 data from November 2013 to March 2014.  This data is in EASE2 grid of 25 km but has 
been resampled to 50km to have the same grid than the SICCI dataset. SICCI2 SIC dataset is also 
used which has a 50km resolutions. These SICCI2 products are downloaded from data.ceda.ac.uk 
webpage. These data is used at section 5. 

 
4. Operational Ice Bridge data collocated with AMSR2 data from 2014 from the RRDB dataset.  The 
OIB files called SICCI-RRDP-ASCAT-vs-AMSR2-vs-ERA-vs-NERSC-OIB-201403XX.text from the 
13,21,26,28 and 31 March 2014 are used in section 7. 

3.- Sea Ice Concentration algorithms presentation 
 
The SIC models used for the analysis are summarized below (and also in the Final Report of the 
previous OSI_AVS_16_03). The electromagnetic frequency of the different channels used by the 
algorithms are specified. Further, we also classify the algorithms into polarization type, frequency 
type or mixed according to their algorithm to do a sensitivity analysis of the different type of 
algorithms to various type of noise and biases. The algorithms analysed are the following: 
  

a) NASA Team (Markus and Cavalieri 2000, uses 19H, 19V, 37V) → Polarization 
b) Bristol (Smith 1996 uses 19V, 37V, 37H)  → frequency  
c) Bootstrap F (Comiso 1986; uses 19V 37 GHz V, 37H) →  frequency  
d) Bootstrap P (Comiso 1986; uses 37 H, 37V) → polarization  
e) Two channel at 10 GHz (uses 10H, 10 V)  → polarization  

 
 SIC=1.33313-0.01686*(TB10H-TB10V) 
 

f) One Channel algorithm (Pedersen (1994), uses 6.9 GHz H), which computes the SIC as:  
SIC = (TB6.9H – OW_TP)/(Ice_TP – OW_TP) 

  
The models One_adap.H and One_adap.V are adaptation of model f), with new Tie Points values 
and using V-pol. →  One polarization 

 
 g) LTP637: algorithm proposed by Leif Toudal uses TB6V, TB37V, wind speed and skin 
temperature from NWP/ERA. → frequency  
 
 h) SICCI2-50km: provided by T. Lavergne et al 2018 uses 6V and 37H and 37V. It takes into 
account SIC values larger than 100%. This is the unique algorithm that uses dynamic tie points. Data 
have been downloaded from data.ceda.ac.uk webpage and have been collocated with SAR data 
(nearest).  → mixed 
  
 i) LowFreq algorithm: provided by T. Lavergne, uses 6GHZ V-pol, 10 GHZ V-pol and 18GHz V-pol 
from AMSR. The TP are tuned for AMSRE. → frequency  
 
 j) SMOS algorithm: described by Gabarro et al 2017. It uses the angular difference of TB V-pol 
at 1.4GHz. The highest limit is 110% → One polarization 
 
      g) SIC models using emissivity (and not Tbs) proposed in the previous VS report (Gabarro et al. 
2016) has also been tested. Emissivity is computed as TB6.9/SkinTemp ( SkinTemp obtained from 
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NWP). → One Polarization 
 

SIC(Emis) = (EMIS 6.9V/H – OW_TP)/(Ice_TP – OW_TP) 
 
 
All the algorithms were evaluated without applying open water/weather filters, since our aim was 
a comparison of the algorithm sensitivities. The tie points are static (constant in time) and are 
specified in Annex 2, except the SICCI2 algorithm that used dynamic tie points. 
 
 
Table 1 below summarize the methodology and bands used for the different analyzed SIC 
algorithms. 
 
 

 

Algorithm Freq used Type Ratio Low frequency 
bands 

NasaTeam 19V,19H,37V Polarization NO 

BRISTOL 19V, 37H, 37V Frequency  NO 

BOOTSTRAP_F 19V, 37V, 37H Frequency  NO 

BOOTSTRAP_P 37H, 37 V Polarization  NO 

Two Channel 10H, 10V Polarization   YES 

OneChannel 10H One pol YES 

LTP637 - Tphys 6V, 37V Frequency  + 
atmospheric 

YES 

SICCI2-50km 6V, 37V, 37H Mixed 
 

YES 

LowFreq  6V, 10V, 19V Frequency   YES 

SMOS 1.4V One pol. YES 

Emis6.9V  6.9 V One pol.+atm YES 

Emis6.9 H 6.9 H One pol.+atm YES 

Table 1: Resume of the algorithms used in the analysis specifying methodology and if low 
frequency bands are used or not. We consider low frequency bands those lower or equal to 10 
GHz. 
 

4.- SIC algorithm performance comparison 

 
In this section we inter-compare the different SIC algorithms used in the study. The analysis is done 
with AMSR-2 (tc_amsr2_nh_ease2-250_YYYYMMDD12000.nc) TB from November 2013 to March 
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2014 (winter period). The TB maps are at 25km resolution, but those have been extrapolated to 50 
Km resolution to have the same resolution as the SICCI2 maps. An averaged SIC winter product is 
computed by time averaging SIC, per grid point, considering only pixels with SIC values larger than 
80%. So the equation results as:  
 

𝑆𝐼𝐶̅̅ ̅̅̅(𝑥, 𝑦) = ∑𝑆𝐼𝐶(𝑥, 𝑦, 𝑡)

𝑡

 

 

  

Figure 1 shows the scatterplots between algorithms as well as the correlation factor. Histograms of 
each of the algorithms are plotted in Annex 1. 
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Figure 1: Scatter plot with the correlation factor of different SIC algorithms 

 
From Figure 1 one can observe that when comparing algorithms which uses same methodology (FR 
or PR) the scatter plots show a narrow line and correlation is high, while the scatterplots of different 
methodological algorithms show a larger dispersion and the correlation values reduces. For 
example, the scatter plot between Bootstrap F (FR) vs Bootstrap P (PR), show large dispersion and 
low correlation. While when comparing same methodology algorithms, correlation increases and 
the dispersion is reduced (i.e. Bootstrap-F vs SICCI2, Bristol vs Bootstrap F, Bootstrap-P vs Two 
Channel)). The SICCI2 algorithm show a high limit value near 1, which is also observed with the 
histograms shown in annex 1. 
 
 

 NT Bristol BtsF Bts P 2Chan 1Chan SICCI2 LowFrq SMOS 

NT  0.87 0.53 0.89 0.92 0.86 0.74 0.57 0.58 

Bristol   0.85 0.71 0.71 0.86 0.92 0.57 0.49 

Bts-F    0.29 0.31 0.55 0.81 0.32 0.93 

Bts-P     0.92 0.86 0.83 0.61 0.47 

2Chan      0.86 0.66 0.58 0.45 

1Chan       0.92 0.77 0.50 

SICCI2        0.74 0.50 

LowFrq         0.57 

SMOS          

 
Table 2: Correlations factor between algorithms. Color codes: Frequency type (red), polarization 
type (green), Mixed (Blue), none of the previous (white). 
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Table 2 shows the correlations value between algorithms. The correlations are higher for those 
algorithm which uses same methodology (FR/PR, or one and mixed). On the other hand, Low 
Frequency bands and SMOS algorithms show low correlation with respect the rest to the models. 

 
 

5.- Study on random errors for 100% ice pixels:   

 
In this section we study the random errors of the SIC product for closed ice pixels for each of the 
proposed models. These pixels with large SIC determined by SAR dataset processed by DTU have 
been collocated with AMSR data. Then the SIC is computed by using the proposed algorithms with 
the AMSRE/2 data.  
 
The closed ice pixels are classified in areas of high sea-ice concentration and after 24h of convergent 
sea ice motion, as computed from a highly accurate SAR-based sea-ice drift product from the 
Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu). This 
RRDP files are described in more details in Ivanova et al. (2015). 
 
In fact, in this section we do a validation against a ground truth which is the SAR determined SIC. 
 
These files also contain atmospheric information, which is required for the LTP637 algorithm (need 
skin temperature and wind speed information) and the emissivity algorithms (need Skin 
temperature). 
 
Table 3 resumes the STD and mean values for closed ice between November and April only (fall and 
winter period) during several years. One can observe that all the algorithms produce SIC>100%, 
result which is expected since the TB values can have larger values than the Tie Points. In fact, this 
is required to compute the STD and mean properly and to avoid biases. Latter one, the SIC values 
larger than 100 are set to 100%.  
 
Table 4 resumes the STD and mean values globally for all the years and classifies the algorithms 
between two categories: 1) uses frequency ratio/polarization ratio/mixed/others and 2) uses low 
frequency bands (1.4, 6.9 and 10 GHz)/Not using low frequency bands. The algorithm which present 
more stable results (less STD) have been emphasized in yellow and are the following: LTP637 model, 
SICCI2-50km model, LowFreq and the Emissivity model at 6.9Ghz, specially using the V-pol.  One can 
observe that all cases uses low frequency bands. Figure 2 shows the same values in a graphic. 
 
SICCI2-50km (in addition to using low frequencies) implements a number of optimizations that the 
other algorithms (including the new "LowFreq") lack (more info of the algorithm can be found in 
Lavergne et al 2018), as for example this method uses dynamic TP.  The values from the SICCI2-50km 
dataset used in this analysis, are not limited to 100% (as the SIC product is). When SIC=100% we use 
the raw data (which has values larger than 100%), to avoid biased results. 
 
To compute the Emis6.9V SIC product we use the collocated skin temperature from the NWP field 
(in this case from the ERA-Interim).  So we compute the emissivity by doing: TB/Tskin. They both 
have the same spatial resolution. The tie points values are also computed from the emissivity values.  
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 2007 2008 2009 2010 2011 2013 2014 2015 

 Mean;std Mean;std Mean;std Mean;std Mean;std Mean;std Mean;std Mean;std 

         

Nasa   
105.08;6.73 
 

98.45;5.04 
 

100.38;4.35 
 

98.34;2.83 
 

99;3.78 
 

94.91;6.11 96.9;6.76 
 

99.52;3.45 
 

Bristol 103.98;3.9 99.45;4.35 
 

99.25;3.61 
 

100.53;3.07 
 

101.18;3.16 
 

98.81;2.21 100.2;2.75 99.43;3.46 
 

Bootstrap F 102.61;7.74 
 

98.64;6.38 
 

98.32;6.73 
 

102.28;5.15 
 

103.28;4.1 
 

100.42;2.67 102.7;3.41 
 

99.12;6.06 
 

Bootstrap P 106.34;8.96 
 

100.83;4.62 
 

100.83;4.87 
 

97.54;3.45 
 

97.58;5.25 
 

95.96;6.82 95.8;8.24 
 

99.98;4.1 
 

TwoChan 
10G 

102.21;8.19 
 

96.52;6.37 
 

99.75;6.34 
 

96.62;4.22 
 

97.61;4.71 
 

92.2;7.08 95.08;8.02 
 

98.57;5.11 
 

One Chan 102.28;2.53 
 

98.16;4.35 
 

99.4;2.71 
 

99;2.39 
 

101.38;2.74 
 

100.64;4.09 101.88;4.46 
 

100.08;4.01 
 

One Chan 
Adapt H 

92.81;2.22 
 

89.2;3.81 
 

90.28;2.38 
 

89.94;2.09 
 

92.02;2.4 
 

92.12;3.62 93.22;3.95 
 

91.63;3.54 
 

One Chan 
Adapt V 

89.17;2.15 
 

87.17;4.14 
 

87.49;3 
 

88.47;2.24 
 

91.48;2.55 
 

92.8;3.18 92.8;3.47 
 

89.35;3.88 
 

LTP37 99.52;3.24 
 

97.47;2.9 
 

97.73;2.61 
 

98.22;2 
 

98.59;1.71 
 

99.78;1.59 100.95;2.15 
 

98.06;2.95 
 

SICCI2-50 98.74;2.31 99.24;1.72 99.04;2.2 99.5;1.52 99.68;1.55 99.27;2.01 99.7;2.3 
 

99.89;2.09 
 

LowFreq 102.26;2.68 
 

99.76;2.76 
 

99.92;1.99 
 

99.22;1.99 
 

100.65;1.9 
 

97.44;2.11 96.23;3.65 
 

94.42;2.77 
 

SMOS  - - - -  -  96.98;6.1 93.73;8.05 93.6;4.9 

Emis 6.9 H 92.68; 1.52 90.36;2.21 91.01;1.58 90.3;1.89 89.35;1.49 89.78:2.3 90.96:2.76 91.18;1.79 

Emis 6.9 V 100.5;2.43 99.37;1.57 99.78;1.83 99.66;1.82 98.35:1.21 99.3;1.57 99.8;1.79 99.78;1.51 

 
 
Table 3: Mean and STD SIC values for several algorithms with AMSR data only for those pixels which 
are considered SIC=100 % by the SAR data, from November to April.  Take into account that 2007-
2011 uses AMSR-E while the rest uses AMSR-2.  
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Table 4: Mean and STD SIC values for several algorithms with AMSR data only for those pixels 
classified as close ice by the SAR data, from November to April for all the years.  Yellow columns 
indicate that the STD is lower or equal 3. 
 

 
 

 
 
Figure 2: Same information as table 3. Mean and STD SIC values for several algorithms with AMSR 
data only for those pixels classified with SIC=100% by the SAR data, from November to April for all 
the years. 
 
 

 Ratio/Low 
freq 

Mean  STD 

Nasa team Mixed /NO 99.07 4.88 

Bristol FR /NO 100.35 3.31 

Bootstrap F FR/NO 100.82 5.28 

Bootstrap P PR/NO 99.38 5.79 

TwoChan 10G PR / YES 97.32 6.26 

One Chan Other/ YES 100.35 3.41 

One Chan Adapt H Other/ YES 91.4 3.00 

One Chan Adapt V Other/ YES 89.84 3.08 

LTP37 FR/YES 98.79 2.39 

SICCI2-50 Mixed/YES 99.38 1.95 

LowFreq FR/YES 98.74 2.48 

SMOS  Other/YES 95.77 6.35 

Emis 6.9 H Other/YES 90.70 1.94 

Emis 6.9 V Other/YES 99.61 1.75 
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Results from Table 4 are comparable with results from table 2 of Ivanova et al. 2015. In that paper, 
they similarly compute the STD of the SIC obtained with different models only for high Sea Ice 
Concentration pixels. Those measurements are not only limited to winter. However, only few 
models from that analysis match with the models studied here. The models used in both analyses 
are: Brictol, NasaTeam, OneChannel and Bootsratp-P. The differences observed are of around 10% 
on the STD.  
 

 
Conclusions: LTP637, SICCI2-50km, LowFreq and the Emis6.9V are the models with better 

stability (less STD) during winter for regions with high concentration of sea ice. The one channel 
Adapt also show low STD but have a clear problem with the Tie-points used. Moreover, those 
algorithms present very near 100% mean value.  An important observation is that the models with 
lowest STD use the low frequency bands (uses 1.4, 6 or 10GHz), which present more precise Tb 
values as already stated in the conclusions of the AVS- 16-03.   
 
 
 
 

6.- Spatial and temporal biases analysis  

 

In this section, we analyze the systematic error (biases) of different SIC algorithms for pixels with 
high sea ice concentration. AMSR-2 TB maps at different bands have been used.  
 
The systematic error is estimated by computing the SIC averaged in time (only winter period), per 
grid point, considering only pixels with SIC values larger than 80%, as described in section 4. Then, 
the spatial bias is estimated by subtracting 1 from the mean SIC (since we expect to have 100% sea 
ice concentration). So the equation results as:  
 

𝑆𝐼𝐶̅̅ ̅̅̅(𝑥, 𝑦) = ∑𝑆𝐼𝐶(𝑥, 𝑦, 𝑡)

𝑡

 

 
∆𝑆𝐼𝐶(𝑥, 𝑦) = (𝑆𝐼𝐶̅̅ ̅̅̅(𝑥, 𝑦) − 1) 

 
 
The temporal variability is also computed as the Standard deviation on time of the maps 

𝜎(𝑆𝐼𝐶(𝑥, 𝑦)) = 𝑆𝑇𝐷(𝑆𝐼𝐶(𝑥, 𝑦, 𝑡)). 

 
The systematic error maps (bias) and the temporal variability (STD in the time domain), for the 
different algorithms are shown in figure 3. Value of STD in the bottom of the figure indicates the 
spatial STD of the bias maps. Figure 3b is the bias map normalized to the product-specific variability. 
 
SIC using algorithms LTP37 and EmisV/H are not compute since they need skin temperature of the 
ice, and we don’t have this variable collocated with this AMRS2 TBs. 
 
Systematic bias observed in close ice regions might be due to surface emissivity variability (due to 
ice type, temperature of the emission layer, snow depth, etc…) over closed ice. 
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Figure 3: Left: Systematic error of high concentration SIC, the legend shows the STD of the spatial 
bias. Right: Temporal variability per pixel. 
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Figure 3b: Systematic error of high sea ice concentration SIC divided by the systematic STD. 

 
 
 
The Polarization type algorithms (BootstrapP and Two Channel), have similar bias pattern as well as 
the temporal std, indicating positive bias in the Russian region, and larger temporal variability near 
the MIZ zones, which is expected. 
 
BootstrapF, Bristol agorithms (FR algorithms & high frequency bands) and NasaTeam (polarization 
type & high frequency bands) show also similar pattern between them: large regional differences 
and an important positive bias in the multi-year ice region (north of Canada) which is also reported 
in Lavergne et al 2018. This bias in multi-year ice is also observed in SICCI2 data but is corrected with 
different techniques. On the contrary, the temporal std is lower than that for the PR algorithms. 
 
Moreover, those maps show a feature near Ellesmere Island, and Canadian coast with large contrast 
in relatively small distance, while the ice type has not been changed. We will analyze the cause of 
this issue with Operation Ice Bridge (OIB) data (see section 7). 
 
The algorithms using low frequency bands show much lower bias and also very low temporal STD, 
except the SMOS map. SMOS suffers from biases in latitude 80º, probably due to the acquisition 
form (lower accuracy in the edges of the track) and also due to using only one band and one 
polarization. The largest variability is in the MIZ zone, which is expected since the SMOS SIC quality 
is limited when thin ice is present. 
 
The spatial variability, STD of the bias are between 5% and 12% in all the algorithms.  
 
The SICCI2 STD is very low (right figure) and this is also evidenced in the histograms from Annex 1. 
We expect that the algorithms which uses static tie points, present larger temporal variability, than 
the one with dynamic tie-points (SICCI2 only). Another reason for the good accuracy of the SICCI2 
algorithm is that this method uses novel correction scheme (Lavergne et al., 2018) that effectively 
mitigates most of the systematic errors over the basin.  The method, prior to the corrections, in was 
underestimating the SIC especially on the Central basin and was overestimating the SIC of the first 
year ice. The use a curvy ice line is one of the corrections applied, which adjust those systematic 
errors (Lavergne et al., 2018).  
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Conclusion on Systematic error analysis: 
 

 Among all, the LowFreq (6V, 10V, and 18V GHz) and SICCI2 (6V and 37H, V) SIC maps show 
less systematic error and also less temporal variability in high SIC regions. The low bias might 
be due to the use of low frequency bands and probably for the fact that they use 3 bands. 
Greater the number of frequencies more information available from the target (i.e. sea ice). 
This is in agreement with the results from previous OSISAF work (Gabarro et al, 2017) where 
they observed that the low frequency TB bands have less systematic and random errors. The 
lower temporal variability of SICCI2-50km might be due to the fact that this algorithm uses 
dynamic type-points.  

 

 Algorithms based on the polarization only (Bootstrap P, TwoChan) show higher systematic 
error in the coast, ice edge, and thin ice regions (Russian coast). TwoChan seems to delineate 
information on the ice type characterization at 10 GHz. 

 

 Algorithms based on the 19/37GHz frequency (Bootstrap F, Bristol) show high positive bias 
in the thick ice regions in the Canada Basin.  Possible reason for that might be the 
deformation of the ice surface roughness (scattering) or snow cover. The gradient ratio 
between the channels 10 and 37GHz V-pol is used to retrieve the snow depth (Markus and 
Cavalieri, 1998). In fact, snow cover and depth reduce TBV specially at 10, 19 and 37Ghz and 
therefore reduce the SIC (Kilic, 2017). Region north of Ellesmere Island is the region with 
largest snow cover (see figure bellow) therefore the negative bias could be due to the high 
snow depth. This will be analyzed in the section 7. 

  
 

 OneChan algorithm shows negative systematic error on the ice edge region.  Maybe due to 
the use of low frequency band (6Ghz) which has certain penetration, and problems when 
thin ice is present. 

 
 

 SMOS also presents a lot of variability in the thin ice region, where it produces an 
underestimation of SIC due to the penetration of the low frequency band. 
 
Two effects lead to better accuracies of the low-frequencies SIC retrievals in regions of high 
Sea ice concentrations:  1) some of the noise sources have less impact such as sea-ice type, 
snow depth, snow scattering, among others, and 2) that the TB of sea ice and water are more 
distant at low frequency bands, resulting in a larger dynamic range for sea-ice concentration 
retrievals as discussed in Lavergne et al., 2018.   
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7.- Correlation analysis between SIC and Tsnow-ice from IMBB data 
 
The objective of this section is to assess the correlation between the SIC algorithms and the 
temperature in the snow-ice interface. A priori, we expect that the low frequency bands present 
higher correlation to temperature.  
 
The report from Lise Kilic with title ‘Improving the effective temperature estimation over sea ice 
using low frequency microwave radiometer data and Arctic buoys’ studies which are the TB bands 
from AMRS2/E that are more sensitive to the snow-ice interface temperature. She concluded that 
TBs at 10GHz and 6GHz bands are the most sensitive ones, and also that the V-pol is more sensitive 
than the H-pol.  
 
For doing the above mentioned analysis we have used the files called SICCI-RRDP-ASCAT-vs-AMSR2-
vs-ERA-vs-IMBCRREL20XX.text which contains AMSR2 data, collocated with IMBB profilers data. 
Moreover, we use only those pixels with SIC from SICCI2 algorithms, larger than 80% SIC. We have 
done the analysis with AMSR2 data, for years 2012 (5 buoys), 2013 (2 buoys)  and 2014 (1 buoy) and 
only data from November to April is considered. 
 
To determine the temperature of the snow-ice interface, we have analysed the temperature profile 
to find the kink which shows the interface (figures not shown). Finally, the data from the sixth sensor 
(called T(4)) of IMBB profilers is used as the Temperature between snow-ice mediums. The matlab 
program from Lise Kilic, attached in her report, has also been used to determine the value of Tsnow-
ice. This program looks for the change on the slope of the temperature profile, and considers the 
depth of the snow-ice interface when the maximum positive derivative slope is present. However, 
we have found a lot of variability on that depth using this program. So we preferred to keep the 
sixth sensor data. 
 
The correlation between SIC and Tsnow-ice for data from different buoys for years 2012 to 2014 is 
computed and is shown in figure 5. Left is the correlation results considering Tsi as the temperature 
at thermistor number 6 and right, is considering Tsi as the temp. at thermistor number 9. Bottom 
figure shows the correlation with different thermistors depth, which has been selected using Kilic 
matlab code. Very different results are obtained within the three cases, and even different 
correlation signs: the first two correlations are positive and negative, while with Kilic method 
correlations are always negative (we cannot explain why).  All correlations are lower than 0.5 in all 
cases, so it means that the Tsi has little impact on the SIC maps.  
 
Being aware the considering Tsi as the temperature of a fix thermistor is a rough approximation, 
(since this depth might change with time and positions) we prefer to continue the analysis with the 
fixed thermistor at the 6th depth. 
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Figure 4: Correlation for all the buoys for years 2012-2014. Top-Left: Tsi computed as T at depth 
position 6. Top-Right:  Tsi computed as T at depth position 9. Bottom: with Tsi computed with the 
Kilic program (Kilic, 2017). 
 

 
 
 
 
Year 2014, even choosing only winter period (Nov- April), several measurements show very low SIC 
and the variability of Tsi is larger.  
 
Using all 3 years of data and considering the fixed thermistor at position 6th (top-left figure), the SIC 
algorithms, which present higher correlation to Tice-snow are the OneChannel, Emis6.9V and 
LowFreq models, even though the correlations are not relevant.  The high correlation with the 
Em6.9V SIC is expected since this method uses the value of Tist from NWP to compute the SIC. It is 
interesting to observe that in some algorithms the correlation is negative. 
 
Conclusion: We can state that the correlations between SIC and Tice-snow is very variable 
depending on the year, and the depth of the thermistors of the buoys. In general, the SIC algorithms, 
which present higher correlation to Tice-snow (considering it the 6th thermistor) are the Emis6.9V, 
OneChannel, and LowFreq models.  However, the correlations are quite low. These algorithms, 
which show higher correlation use the low frequency bands and vertical polarization. This is 
completely in line with the results from Lise Kilic (Kilic, 2017), which states that the largest 
correlation between TB and Tsi is observed in the low frequencies bands and with the vertical 
polarization. 
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On the contrary, these models are the ones that present less STD in the first part of the study, 
showing a compromise between them. One could infer that the SICCI 2 model is the most stable, 
with low STD variability and presents low correlation with temperature. 
 
The scatterplots and the slope between SIC and Tsi (considered as the 6th thermistor) are plotted in 
Figure 5, which are an indication of the relation between them. Again, the algorithms, which present 
larger slope is One Channel, Two Channel and LowFreq algorithms. This confirms that the algorithms 
using Low frequency bands are more sensitive to temperature of ice. Authors do not see any relation 
between the methodology used to retrieve SIC (frequency or polarization ratio) and the Tsi value. 
We should also take into account that in this section we are comparing measurements from one 
point (buoy) with the satellite footprint of 25Km resolution. This mismatch produces representation 
errors. Small scale variability near the buoy will not be observed by the satellite measurements, 
while might be observed by the buoy sensor. Therefore, this comparison results might introduce 
errors. Another analysis to determine the sensitivity of SIC to snow-ice temperature would be to 
compare the satellite footprint with a NWP modelled temperature at similar resolution. 
 
 
 

  

  

Figure 5:  Scatterplot and slope of SIC vs Temperature of snow-ice interface, using Tsi from 
thermistor number 6. 
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8.- Correlation analysis between SIC and snow depth using OIB data 

 

With the objective to analyze the reason for the abrupt changes on the systematic bias maps 
(section 6) near Ellesmere Islands, we use Operation Ice Bridge (OIB) data collocated with AMSR 
from the RRDP database. We would like to see if bias on SIC could be caused by the snow depth 
dependence, thin ice, etc. Figure 6 shows the snow depth and ice climatology for the Arctic Region.  
 

 

Figure 6: Snow annual sea ice thickness and climatological 
winter snow depth, from Zygmuntowska et al. (2014). 

 
 
The report from Lise Kilic with title ‘Improving the effective temperature estimation over sea ice 
using low frequency microwave radiometer data and Arctic buoys’ studies the TB bands from 
AMRS2/E which are more sensitive to the snow depth using the OIB data from 2013. The report 
conclude that the best channels found to retrieve the snow depth variability are the 6.9 GHz V-pol, 
18 GHz V-pol and 36.5 GHz V-pol. So following this conclusion we should expect that the algorithms 
that present more dependence on the snow depth (since they use the previously cited bands) would 
be: Bootstrap F (uses 19/37Ghz V-pol only), Bristol and One channel and LTP637.  
 
The OIB files called SICCI-RRDP-ASCAT-vs-AMSR2-vs-ERA-vs-NERSC-OIB-201403XX.text from the 
13,21,26,28 and 31 March 2014 are used. 
 
Only AMSR2 data in the region with longitude between 0º and 130º W have been used to focus the 
analysis (see Figure 7). Several SIC maps have been computed using described algorithms. Figure 8 
shows that certain correlation is observed between the SIC and increase/decrease of snow depth, 
even though the correlation value varies a lot depending on the SIC algorithms used. In figure 8 the 
correlation factor and the slope of the regression line is specified for each algorithm used. 
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Figure 7: tracks from OIB which has been used for this analysis. The color indicates the mean snow 
value (in m) in the region. 

 
 
The OIB measurements are continuous with airplane flight. Then, to perform the collocation, the 
sensor measurements are averaged into the satellite footprint. Furthermore, the representation 
error is lower than when comparing satellite footprint with the buoys measurements. 
 
Figure 9 shows the correlation between SIC and the Sea ice thickness (SIT) obtained also from IOB 
data. Correlations are low, showing a maximum of -0.39 (when using bootstrap F algorithm). Figure 
10 computes the correlation between SIC and Skin temperature of the ice, obtained also from the 
OIB dataset. 
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Figure 8: Correlation between SIC and Snow Depth (in m) from OIB 
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Figure 9: Correlation between SIC and sea ice thickness (in m) from OIB 
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Figure 10: Correlation between SIC and Skin Temperature (in K) from OIB 

 
 
Conclusions of comparison between SIC and OIB:  
 
Correlations with snow depth: 

- Bootstrap F (and Bristol to a lesser extend) shows a light negative correlation with snow 
depth. This is coherent with figure 6 (bias maps) in the region of Ellesmere Island, where high 
snow depth is measured with Ice Bridge campaign.    

- One Channel and two channels show a significant (but low) correlation to snow depth, with 
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negative slope, which translates as: high snow lowers the SIC, which might explain the 
negative bias observed north of Canada in the maps.  

- Nasa Team and Bootstrap P show a very light positive correlation with positive slope with 
snow depth, which could explain the positive bias pattern observed in these systematic 
maps. 

- SICCI2 behaves as insensitive to snow depth. 
 

Correlations with SIT: 
- Bootstrap F and Bristol show a negative correlation and slope with SIT which is opposite to 

what we observe in the maps.  
- We do not observe correlation between OneChan and TwoChan and SIT: 

 
Correlations with Tskin parameters: 

- Nasa and Bootstrat P have some positive trends with increasing Tskin and show a positive 
correlation. 

- Bootstrap P have similar trend with Tskin, while this is negative for Bootstrap F.  
 

 

 

8.- Conclusions 

 

 SICCI2 and LowFreq algorithms show low systematic and random error and are robust 
to other geophysical parameters changes (low sensitivity to snow depth and SIT). 
 

 The algorithms using low frequency bands show lower random noise, which is coherent 
with other studies. 

 

 These results underline the potential that future missions like CIMR (Copernicus 
Imaging Microwave Radiometer) could have on generating high quality sea ice 
concentration products. 

 
 

 The algorithms using the frequency ratio and middle frequency bands (19 and 37GHz), 
like Bootstrap F and Bristol show a large bias in the regions of multi-year ice. 
 

 

 SMOS SIC show important errors in some regions of the Arctic. It also shows systematic 
errors near the hole circle due to acquisition method. Moreover, the low frequency 
bands, SMOS and OneChannel (1.4Ghz and 6Ghz) are sensitive to thin ice, so presenting 
errors in region of thin ice like the MIZ zones. 

 

 OneChan shows low systematic error average but results show dependence on snow 
depth. 
 

 

 SICCI2 is the algorithm showing better performances.  However, one should take into 
account that this model is the only one with dynamic tie points. 
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 We recommend to explore the possibility to use the 6.9 GHz emissivity values to retrieve 
SIC due to its low random error performance. 
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ANNEX 1: 
 
The histograms of the SIC spatial bias (computed as described in section 4) during the month from 
November 2013 to March 2014 have been plot using the AMSR-2 data. Take into that only pixels 
with SIC larger than 80% are considered to create the histograms (since the analysis is focus only 
over high SIC regions).  
 
Figures show bi-model histograms for the PR algorithms, with a maximum near 0 (so SIC=1) and 
another in SIC=1.18 approx. This is because they are sensitive to different ice types and snow types. 
The algorithms which show less noise, smaller STD, are SICCI2, SMOS and the Frequency rate 
algorithms (BootstrapF and Bristol), which is coherent with results already analysed. 
 
The SICCI2 algorithm histogram show an abrupt cut just after 1, as previously observed. Lowfreq 
and OneChan show a large positive tail, but with very few points on those values. 
 
SMOS show a tight distribution having a small STD.  
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Figure annex : histograms of the averaged SIC -1 during winter time. 
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