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1 Introduction
The objective is to improve the estimation of the sea ice effective temperature which is part of the sea ice
emissivity (OSI-404) product and which could potentially be used for improving the physical correction of sea
ice concentration (OSI-401-b). This will be achieved by deriving empirical relationships (regression models)
for the snow-ice interface temperature and the effective temperature as a function of the AMSR brightness
temperatures. The snow ice interface temperature is strongly correlated with the Teff.

The Teff is the integrated emitting layer temperature of the snow and ice. Teff is related to the upper
profile physical snow and ice temperature by the snow and ice microwave emission and scattering processes
[Tonboe et al., 2011]. These relationships between Teff and the physical temperature profile are complicated
especially at higher microwave frequencies (> 10GHz) where scattering from snow grains and voids in
the sea ice plays an important role. Also layering and vertical structure in the snowpack is affecting the
microwave emission processes and especially the polarisation difference of the brightness temperature (Tb)
at horizontal polarisation [Tonboe, 2010]. Because of these complicated relationships between the physical
temperature, Teff and the brightness temperature an empirical algorithm based on regression analysis will
be pursued using the extensive sea ice buoy and in situ database developed in the ESA sea ice CCI project
(http://www.seaice.dk/ecv2/rrdb-v1.1/).

At 6 GHz there is a very high linear correlation between the snow-ice interface temperature and the
Tb and Teff [Tonboe et al., 2011]. This is because the microwave penetration though the snow layer and
because the emission is relatively unaffected by scattering from snow grains. Higher frequencies have more
shallow penetration than at 6 GHz due to increasing scattering and absorption as a function of frequency
and preliminary results show that it is possible to derive the vertical temperature profile using a suite of
frequencies and simple regression models [Grönfeldt, 2015]. Even though these relationships get more noisy
at higher microwave frequencies (> 10GHz) there is still a very high correlation between Teff at microwave
channels between 6 and 50 GHz [Tonboe et al., 2011]. This is exploited in the current operational set-up for
deriving Teff in OSI-404-a (yet unpublished but updated ATBD).

In section 2 a description of the dataset used will be given, then in section 3, the method used to estimate
the snow-ice interface temperature, the snow depth and Teff is presented, and in section 4 the results will
be shown and discussed.

2 Dataset
2.1 The Round Robin Database
The European Space Agency’s (ESA) climate change initiative (CCI) sea ice project has established a round
robin data package (RRDP) for sea ice concentration (SIC) algorithm inter-comparison and evaluation.
The dataset is openly available. It contains an extensive collection of collocated microwave radiometer
data and other geophysical parameters with relevance for computing and understanding variability of the
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Figure 1: Position of IMB buoys over Arctic

microwave radiometer SIC over open water and 100% sea ice. The RRDP contains data which can be used
for analysing SIC variability and the microwave emission processes and their relationship with the snow and
ice temperature, snow cover and ice. It can therefore also be used for analysing other sea ice parameters
than SIC, here, the temperature.

In the RRDP we will look at the Ice Mass Balance (IMB) Buoys data and at the Operation Ice Bridge
(OIB) data collocated with the observations of the radiometer Advance Microwave Scanning Radiometer -2
(AMSR-2).

2.2 AMSR data
In the RRDP, in-situ data are collocated with the observations from AMSR-E (May 2002 - October 2011) or
AMSR-2 ( May 2012 - now ) depending on the year. AMSR-2 is a passive microwave radiometer sensor. The
instrument is on board JAXA’s GCOM-W1 satellite, launched on May 18, 2012. AMSR-2 has 14 channels
: 6.9, 7.3, 10.65, 18.7, 23.8, 36.5 and 89 GHz for both vertical and horizontal polarization. The products of
this sensor are brightness temperatures for each channel. The spatial resolution of each of the channels has
been resampled to the 6 GHz resolution before co-location (RRDP report Pedersen and Saldo [2016]).

2.3 CRREL Ice Mass Balance Buoy Data
Ice mass balance (IMB) buoys are installed to measure the ice mass balance of the Arctic sea ice cover. Buoy
Components include an above ice acoustic sounder, under ice acoustic sounder, and a temperature string
extending from the air, through the snow cover and sea ice, into the water with the temperature sensors
located every 10 cm along the string. The buoys also include instruments to measure air temperature,
barometric air pressure and GPS position. A data acquisition system collects and transmits the data back
to CRREL (Cold Regions Research and Engineering Laboratory) [Perovich et al., 2017].

In the RRDP the IMB buoys data were collocated with : ERA-interim which is reanalysis data using
Numerical Weather Prediction (NWP) and delivered by ECMWF (European Centre for Medium-Range
Weather Forecasts) [Berrisford et al., 2011], the brightness temperatures from the microwave radiometer
AMSR-2 or AMSR-E, and ASCAT observations. The scatterometer data are from IFREMER CERSAT. In
the new version (v1.91) of the RRDP, there is also SMOS, SMAP and QSCAT observations collocated with
the IMB buoys.

For this study, I use buoy data recorded during the cold period during winter (1st December to 1st April).
During the first part of the study I used the buoys : 2012 G, 2012 H, 2012 J and 2012 L. Later during the
study the RRDP was updated and four new buoys were included: 2013 F, 2013 G, 2014 F and 2014 I.
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Figure 2: Temperature profile from IMB buoy 2012 G with air-snow interface level and snow-ice interface
level computed with automated method

2.4 Operation Ice Bridge data
Since 2009 NASA’s Operation Ice Bridge has collected ice and snow thickness data in the Arctic during annual
flight campaigns (March- May) to bridge the gab between ICESAT1 (2003-2010) and ICESAT2 (planned
launch in 2018) satellite missions. The data are especially valuable in this context since they contain snow
thickness information from the snow radar. In RRDP, original OIB data are averaged into 50 km sections
for better overlap/co-location with AMSR TB data. OIB data are also collocated with AMSR-2/AMSR-E
observations, ASCAT observations and ERA-interim reanalysis data.

2.5 Simulated data from MEMLS model
Simulations were performed using the MEMLS model [Mätzler and Wiesmann, 2012]. Effective temperature
and emissivity of sea ice at different frequencies were computed from different snow and ice parameters.

3 Methods
Here I describe step by step, the method used in order to improve the sea ice effective temperature estimate.
We will look at a snow-ice interface temperature level detection method. Then we will describe our method
to retrieve the snow-ice interface temperature, the snow depth and finally the effective temperature.

3.1 Temperature profile through snow and ice
Sea ice temperature profile have particular behavior. The temperature starts very cold in the air during
winter. In the snow, temperature gets warmer as a function of the depth. The temperature gradient in the
snow is very large. In ice, the temperature gradient becomes smaller than in the snow because of differences
in the snow and ice thermal conductivity, but the temperature still to get warmer as a function of the depth.
Then in water, where the temperature is just the freezing point, the temperature gradient is very small in
the upper meter because of turbulent mixing.

Air-snow interface and snow-ice interface position can be detected by a change in the temperature gra-
dient. An automated method was implemented (Matlab code is given in Appendix A.1). It detects the
slope changes in the temperature profile. Figure 2 shows a typical temperature profile through sea ice from
IMB buoy 2012 G and the air-snow interface and snow-ice interface positions deduced with the automated
method.
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Figure 3: Correlation coefficient R between AMSR-2 channels and the physical temperature at different
depth levels. IMB buoy 2012 J.

Figure 4: The most correlated channel to the physical temperature at each depth level through air, snow
and ice. At each depth level the channel giving the highest correlation coefficient is indicated. IMB buoy
2012 J.

For each buoy, the snow-ice interface level is the mean on the entire winter period, of the snow-ice interface
levels detected for each profile recorded by the buoy. The same is done for the air-snow interface level. This
makes it possible not to take into account some particular profiles but the variability of the snow-ice interface
position and snow-air interface position during winter is not taken into account.

3.2 Forward selection method
To retrieve the snow-ice interface temperature from brightness temperature at low microwave frequency,
statistical analysis have been made to select the channels which are best describing the variability of the
snow-ice interface temperature. Correlation coefficient between the temperature at each level of depth
and the brightness temperature at each frequency is computed (see Figure 3). Note that the brightness
temperature of horizontal polarization are less correlated with the physical temperature than the brightness
temperature at vertical polarization.

Figure 4 shows the best correlated channel for each depth level. The 89 GHz V-pol channel brightness
temperature is well correlated with the air temperature. The 6 GHz V-pol channel brightness temperature
is well correlated with the ice temperature as expected. Note that at snow-ice interface it is the 10 GHz
V-pol channel which is the best correlated channel.

The stepwisefit function from MATLAB was used to select the most relevant channels when using more
than one channel for the regression.
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3.3 Multi-linear regressions
3.3.1 Snow-ice interface temperature from brightness temperature

According to the results found in the section 3.2, the 10.65 GHz V-pol channel is the most correlated channel
to the temperature at the snow-ice interface and it will be used to retrieve the TSI. The 6.9 GHz channel
will also be used to retrieve TSI because it is high correlated to temperature at the snow-ice interface. A
comparison will be done between the regression using 10.65 GHz channel and the regression using 6.9 GHz
channel.

The buoys 2012G, 2012H, 2012L are used to do the linear regression. The buoy 2012 J has a large
dispersion of its TSI observations in a small brightness temperature range, therefore this buoy is not used
to do the regression.

In a first method, the data are centered, and a linear equation is computed for each buoy between the
snow-ice interface temperature and the brightness temperature at 10.65 GHz in V-pol. A mean is done with
the coefficients from the different buoys and a coefficient of the slope of 1.667+/-0.3844 was found. Another
method can be applied it consists of doing the linear regression on the centered data of all buoys, thus the
coefficient of the slope found is 1.101+/-0.028. With 6.9 GHz V-pol channel, the coefficient for the first
method is 1.209+/-0.39 and for the second is 1.144+/-0.032. The second method is more robust than the
first one considering the estimation errors. In the following, the coefficients from the second method are
used.

Figure 5: Centered TSI expressed as a function
of the centered TB at 10.65 GHz. Data from the
buoys are in colored points and the linear regres-
sion is the black line.

Figure 6: Centered TSI expressed as a function
of the centered TB at 6.9 GHz. Data from the
IMB buoys are in colored points and the linear
regression is the black line.

3.3.2 Snow-ice interface temperature from snow depth

Without center the data, the offset of linear regression is not the same for each buoy. A linear relation
between the inverse of snow depth and the snow ice interface temperature is found to explain the changing
offset.

This dependence of the TSI as a function of the inverse of the SD is explained physically. The temperature
gradient in the snow can be expressed as follows [Sturm et al., 2002] :

dTs

dz
= Tair − TSI

SD
(1)

where Ts is the temperature in the snow, z the depth and Tair the air temperature. Integrating the equation
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1, we obtain : ∫
SDdTs =

∫
(Tair − TSI)dz (2)

Ts = (Tair − TSI)
SD

z + C

SD
(3)

Where C is a constant. If Ts = TSI then z = SD, the TSI is finally expressed as a function of the inverse
of snow depth :

TSI = Tair

2 + C

SD
(4)

In order to compute the coefficient of our linear regression between snow depth (SD) and snow-ice
interface temperature, the snow-ice interface temperature (TSI) is corrected of its brightness temperature
(TB) dependence as follows :

TSI − a × TB = b × 1
SD

+ c (5)

Then linear regression is done between snow-ice interface temperature and the inverse of snow depth with
the data from all IMB buoys (2012 G, H, J, L, 2013 F, G and 2014 F, I). Results at 6.9 GHz and 10.65 GHz
will be shown in section 4.1.

Figure 7: TSI corrected of the TB at 10.65 GHz
dependence as function of the snow depth. Datas
from the different IMB buoys are in colored points
and the regression is the red line.

Figure 8: TSI corrected of the TB at 6.9 GHz
dependence as function of the snow depth. Datas
from the different IMB buoys are in colored points
and the regression is the red line.

3.3.3 Snow depth from brightness temperature

We would like to estimate the snow-ice interface temperature from satellite brightness temperature. the
snow-ice temperature is depending on snow depth, an analysis is done to estimate the snow depth from
brightness temperatures. First the OIB data from the campaign of 2013 are used to do the forward selection
of channels. OIB data permit to have enough observations to do our analysis. The gradient ratio between the
channels 19 GHz and 37 GHz V-pol is known to retrieve the snow depth [Markus and Cavalieri, 1998, Comiso
et al., 2003], but it doesn’t show good results for our case. It has been developed for snow on Antarctic
first-year ice and it overestimates snow depth over Arctic multiyear ice. Using the function stepwisefit from
MATLAB, the best channels found to retrieve the snow depth variability are the 6.9 GHz V-pol, 18 GHz
V-pol and 36.5 GHz V-pol.

Then the multilinear regression is done using the IMB data from the winter 2012-2013 (Buoys 2012
G,H,J,L).

SD = d × TB6V + e × TB18V + f × TB36V + g (6)
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Results will be shown in section 4.2.
The multi-linear regressions using 2 predictors (18.7 and 36.5 GHz channels) and using 4 predictors (6.9,

18.7, 36.5 and 89 GHz channels) have been also tested. But the results obtained with these combinations
increase the RMSE when comparing with IMB buoys data and the independent OIB data.

3.3.4 Effective temperature from Snow-Ice interface temperature

The effective temperature is only available on data simulated with the MEMLS model. The simulations were
part of an earlier version of the RRDP and the simulation methodology is described in Tonboe [2010]. The
empirical linear equations 8 and9 found with observation data are compared with simulated data. A bias is
expected between the model and the observations. Snow-ice interface temperature from simulated data and
snow-ice interface temperature from observations are therefore related as follows if slopes are similar:

TSIsim = TSIobs + offset (7)

Then a linear relation between the effective temperature at different channels and the snow-ice interface
temperature is computed using only simulated data. For each channel linear regression is done between
the effective temperature in vertical polarization and the snow-ice interface temperature. Results will be
described in section 4.3.

4 Results and Discussion
4.1 Snow-Ice interface Temperature
The final equations to relate snow-ice interface temperature to the snow depth and the brightness at 10.65
GHz on the one hand and at 6.9GHz on the other hand are presented here :

TSI = 1.101 × TB10V − 0.999 × 1
SD

− 14.28 (8)

TSI = 1.144 × TB6V − 0.815 × 1
SD

− 27.08 (9)

Where TSI and TB are expressed in K, and SD in m.
The Root Mean Squared Error is calculated for the two linear regressions using the observations of the

8 IMB buoys available. The RMSE for the linear regression using the 10 GHz channel is 2.11 K and for the
linear regression using the 6.9 GHz channel is 2.22 K. The 10 GHz channel better describe the variability due
to the snow depth (see Figures 9 and 10). In Figure 9 and 10, the straight line is representing TSI calculated
from the equations 8 and 9 respectively, where SD is taken as the mean of the SD measuring by the buoy
during the entire winter. The channel giving the closest results to the observations is not always the same,
depending on the buoy and other parameters (see Figure 11). Some errors can be introduced when choosing
the level of the snow-ice interface. In the methodology the level of the snow-ice interface is chosen constant
during the time within the same buoy. So, possible changes of the position of the snow ice interface are
not taken into account. Moreover, vertical resolution of the IMB buoys is 10 cm, which can introduce some
errors too. Correcting for these effects will improve the accuracy of the model.

4.2 Snow Depth
The multiple linear regression to retrieve the snow depth from brightness temperature is expressed as follows:

SD = 1.7701 + 0.017462 × TB6V − 0.02801 × TB18V + 0.0040926 × TB37V (10)
Where SD is expressed in m and TB in K.

To calculate the RMSE all IMB buoys have been used except the 2013 F buoy which have a very deep
snow (> 0.5m). The RMSE is 0.0512 m.
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Figure 9: Snow-Ice interface temperature ex-
pressed as function of brightness temperature at
10.65 GHz, for the different IMB buoys. Observa-
tions are in colored points and the linear regression
in colored straight line. The mean snow depth of
the buoy is used to compute Tsnow−ice with the
linear model.

Figure 10: Same than Figure 9 but using 6.9 GHz
brightness temperature

Figure 11: Comparisons between the observations from the different IMB buoys and the linear regressions
with the 10 GHz channel and 6 GHz channel.

We also compare the results of the multiple linear model with the measurements from the OIB campaign
during the year 2013. The RMSE between OIB data and the multiple linear model is 0.0626 m. Figure
13 shows a very good consistency between the observations and the simulations. The correlation coefficient
calculated worth r = 0.86.

This model shows encouraging results but it doesn’t work for too thin snow (< 0.05m) nor for too deep
snow (> 0.5m).

4.3 Sea Ice Effective Temperature
Finally, we use a dataset of simulated effective temperature using the MEMLS model in order to find the
relation between the snow-ice interface temperature and the effective temperature at different channels.

The equations 8 and 9 are tested on the simulated data from MEMLS. Figures 14 and 15 show the
results of this comparison. The offset of our multi-linear regression was read from the figure manually on
the MEMLS simulated data. A bias of 5 K is found between the snow-ice interface temperature estimated
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Figure 12: Comparisons between the observations from the different IMB buoys and the simulations from
the multiple linear regression.

Figure 13: Comparisons between the measurements of snow depth done during 2013 OIB campaigns and the
simulations from the multiple linear regression using AMSR2 observations.
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from our model and the snow-ice interface temperature given by the simulated data of MEMLS model. It
was expected and an equation between TSI from MEMLS simulations and TSI from our empirical model is
given :

TSIsim = TSIempirical model − 5 (11)

Where TSI is expressed in K.

Figure 14: Snow ice interface temperature from
memls data as a function of the brightness tem-
perature at 10.65 GHz in blue points, and the
multi-linear regression for the mean snow depth
in black line.

Figure 15: Snow ice interface temperature from
memls data as a function of the brightness tem-
perature at 6.9 GHz in blue points, and the multi-
linear regression for the mean snow depth in black
line.

Then linear regression between the snow-ice interface temperature of simulated and the effective temper-
ature of simulated data at different channels is done. Results are shown on Figure 16. For each channel the
coefficients of the linear regression changes. We note that the slope coefficient increases with frequency. So
the sensitivity of the Teff to the TSI is increasing, and the sensitivity to noise is also increasing as a function
of frequency.

The equations for each channel are given here with the RMSE :

Teff 6.9V = 0.888 × TSnow−Icesim
+ 30.245 , rmse = 0.891

Teff 10.65V = 0.901 × TSnow−Icesim
+ 26.569 , rmse = 0.755

Teff 18.7V = 0.920 × TSnow−Icesim
+ 21.536 , rmse = 0.6317

Teff 23.8V = 0.932 × TSnow−Icesim
+ 18.417 , rmse = 0.566

Teff 36.5V = 0.960 × TSnow−Icesim
+ 10.902 , rmse = 0.410

Teff 50V = 0.989 × TSnow−Icesim
+ 2.959 , rmse = 0.320

Teff 89V = 1.0604 × TSnow−Icesim
− 16.384 , rmse = 0.920

(12)

Where TSI and Teff are expressed in K.
Note that the linear regression of Teff at the 50 GHz channel has the lowest RMSE and the one at the

89 GHz channel has the highest RMSE.

5 Conclusion
Equations for the snow-ice interface temperature, the effective temperature and the snow depth in terms
of brightness temperatures were estimated using RRDP data. The snow-ice interface temperature and the
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Figure 16: Relation between the snow ice interface temperature and the effective temperature at different
frequencies. The data are in blue points and the linear regression in black line.

snow depth are needed for estimating the effective temperature. Multi-linear regressions have been used. A
parametric equation was found for TSI giving an error of 2.11 K when using the 10.65 GHz channel and
2.22 K when using the 6.9 GHz. The multi-linear model to estimate the snow depth from 6.9, 18.7 and 36.5
GHz channels, gives an error of 0.05 m. The linear regression equations to estimate the Teff at different
microwave frequencies as function of the TSI are presented. This work gives the keys to derive the Teff from
the microwave TBs. These new Teff estimations can be used for correcting brightness temperature over ice
in order to compute sea ice concentration.

I recommend that the estimated effective temperature at 50 GHz is implemented into the OSI-404 sea
ice emissivity product, and that the effective temperature at 18.7, 36.5 and 89 GHz is used, for correcting
the brightness temperatures before computing the sea ice concentration in OSI 401 and OSI 408.
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A Appendix
A.1 Function to detect the level of the snow-ice and snow-air interfaces
function [ levelSAint,levelSIint ] = find_SA_and_SI( tprof )
%This function find the level of the air-snow interface and the snow-ice
%interface
%tprof : matrix containing the temperature profile,
%each column correspond to a level in the profile and each row correspond
%to observations
%levelSAint : vector containing the level of Air-Snow interface for each
%observation
%levelSIint : vector containing the level of Snow-ice interface for each
%observation

slopeprof=zeros(size(tprof,1),size(tprof,2));
for i=1:size(slopeprof,1)

for j=2:size(slopeprof,2)-1
%compute temperature gradient
slopeprof(i,j)=tprof(i,j+1)-tprof(i,j-1);

end
end
slopeprofdiff=zeros(size(tprof,1),size(tprof,2));
levelSIint=zeros(size(tprof,1),1);
levelSAint=zeros(size(tprof,1),1);

for i=1:size(slopeprof,1)
for j=3:size(slopeprof,2)-2

%compute derivative of the temperature gradient
slopeprofdiff(i,j)=slopeprof(i,j+1)-slopeprof(i,j-1);

end

%localize the slopes changements
[~,pic1]=min(slopeprofdiff(i,:));
[~,pic2]=max(slopeprofdiff(i,:));
levelSAint(i)=min([pic1 pic2]);
levelSIint(i)=max([pic1 pic2]);

end
end

A.2 Function to read IMB CRREL data from RRDP database
function [ Cmat ] = read_RRDP_IMBCRREL(filename)
%read_RRDP_IMBCRREL
% this function permit to read the files of the Round Robin Database
%containing IMB CRREL data
%filename : the name of the file containing the data
%Cmat : the ouput matrix containing the data

isstring=[ 4 9 34 35 61 79 84 85 91];%columns of the file which are strings
istime=[3 6 33 60 83];% columns of the file which are time data
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%create the format of the data file
fmt = cell( 1, 91 ) ;
fmt(:) = {’%s’} ;
fmt = [fmt{:}] ;

%open the file
fileID = fopen(filename);
%read variables of the file as strings
C= textscan(fileID,fmt,’headerlines’, 2,’delimiter’,’,’);
fclose(fileID);

col=length(C);
row=length(C{1,1});

%Create a numeric matrix which contains the data except strings data (put
%to 0)
Cmat=zeros(row,col);
nanval={’noval’,’ noval’,’ noval’,’ noval’,’ noval’,’ noval’,’ noval’};
for j=1:col

if sum(j==isstring)==1
Cmat(:,j)=0;

else
for i=1:row

if sum(j==istime)==1
if j==6

Cmat(i,j)=datenum(C{j}(i),’mm/dd/yyyy HH:MM’);
else

Cmat(i,j)=datenum(C{j}(i),’yyyy-mm-ddTHH:MM:SSZ’);
end

else
if sum(strcmp(C{j}(i),nanval)==1)
Cmat(i,j)=NaN;

else
Cmat(i,j)=str2double(C{j}(i));

end
end

end
end

end

end

A.3 Function to read NERSC OIB data from RRDP database
function [ Cmat ] = read_RRDP_NERSC_OIB(filename)
%read_RRDP_NERSC_OIB
% this function permit to read the files of the Round Robin Database
%containing NERSC OIB data
%filename : the name of the file containing the data
%Cmat : the ouput matrix containing the data

isstring=[ 4 23 24 50 68 73 74];%columns of the file which are strings
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istime=[3 22 49 72];% columns of the file which are time data
%create the format of the data file
fmt = cell( 1, 80 ) ;
fmt(:) = {’%s’} ;
fmt = [fmt{:}] ;

%open the file
fileID = fopen(filename);
%read variables of the file as strings
C= textscan(fileID,fmt,’headerlines’, 2,’delimiter’,’,’);
fclose(fileID);

col=length(C);
row=length(C{1,1});

%Create a numeric matrix which contains the data except strings data (put
%to 0)
Cmat=zeros(row,col);
nanval={’noval’,’ noval’,’ noval’,’ noval’,’ noval’,’ noval’,’ noval’};
for j=1:col

if sum(j==isstring)==1
Cmat(:,j)=0;

else
for i=1:row

if sum(j==istime)==1

Cmat(i,j)=datenum(C{j}(i),’yyyy-mm-ddTHH:MM:SSZ’);

else
if sum(strcmp(C{j}(i),nanval)==1)
Cmat(i,j)=NaN;

else
Cmat(i,j)=str2double(C{j}(i));

end
end

end
end

end

end
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