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1. Executive Summary 
 
Optimal estimation SST is currently undertaken with error covariance matrix assumptions based on 
heuristics and expert assumptions. Incorrect specification causes the “optimal” retrievals in fact to be 
sub-optimal. This study demonstrates new methods to estimate appropriate parameters for OE, 
adapting ideas from Kalman filtering and Desroziers diagnostics in data assimilation. These methods 
are shown to improve SST error statistics and retrieval sensitivity. Additional insights into the nature of 
prior and forward model biases, including the degree of cross-channel simulation-error covariance and 
angular dependencies, are further obtained. 
 

Disclaimer 
All intellectual property rights of the OSI SAF products belong to EUMETSAT. The use of these prod-

ucts is granted to every interested user, free of charge. If you wish to use these products, EUMETSAT’s 
copyright credit must be shown by displaying the words “Copyright © <2019> EUMETSAT” on each of 
the products used. 
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2. Introduction 
Optimal estimation (Rodgers, 2001) has been applied to the remote sensing of sea surface temperature 
(SST) from space in several studies (e.g., Merchant et al., 2008; Merchant et al.,2009), and has been 
widely applied to the retrieval of cloud properties, aerosol loadings and gas concentrations in the 
atmosphere.  
 
Despite this heritage, use of optimal estimation is not without problems. OE assumes access to a 
forward model that can simulate observations with known uncertainty and zero-mean bias. In practice, 
the accuracies of the calibration of satellite sensors and of radiative transfer simulation through the 
atmosphere are not sufficient to guarantee that bias of the forward model relative to observations are 
negligible. Specific criticism of the application of OE to SST (Koner et al., 2015) has centred on the 
problem of determining appropriate error covariance parameters that are used in OE to give optimal 
weights to prior information and new observations when determining the solution. These parameters 
have typically been estimated from knowledge of satellite sensor specifications, the degree to which 
radiative transfer models disagree, and validation of information used as prior knowledge. Expert 
judgement is involved, and it is desirable to put estimation of error covariance parameters on a more 
objective footing. 
 
In this paper, we demonstrate methods addressing both problems (estimating bias corrections and 
estimating error covariance matrices) in the context of retrieval of SST. The methods require anchoring 
to a reference, and for this a dataset of matches between satellite and in situ measurements of SST is 
used. The essence of the bias correction method is to retrieve the necessary parameters progressively 
from many satellite-in-situ matches, thereby extending OE to be “bias-aware” [Dee et al., 2005]. This 
method draws on the well-known technique of Kalman filtering, although not here applied sequentially 
in time. The essence of the error covariance method is to interrogate the pre- and post-retrieval 
residuals between the forward model and observations, using formulations derived by Desroziers et al. 
[2005] for application in data assimilation. The diagnostic has been used in the context of numerical 
weather prediction to estimate uncertainties for a variety of atmospheric observations including those 
from IASI and SEVIRI (Stewart et al 2013, Waller et al 2016a, Waller et al 2016b, Cordoba et al 2016). 
The use of improved observation error statistics in operational assimilation has resulted in improved 
analyses and forecast skill (Weston et al 2014, Bormann et al 2016, and Campbell et al 2017). 
 
The next section of this paper expands upon this short introduction: sea surface temperature by optimal 
estimation is placed in the context of alternative retrieval methods, the equations of OE are presented 
as formulated for SST retrieval, and criticisms of the approach further explained. Section 3 describes 
the particularities of the data used in this study, and the operational context for the work. Section 4 
presents the method of estimating bias correction, and section 5 the method of estimating error 
covariance matrices. The results are shown in section 6 in comparison with other options for SST 
retrieval (regression-based coefficients and modified total least squares). The paper concludes with a 
discussion of the practical importance of what has been presented.  
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3. Sea Surface Temperature Retrieval 
 
Sea surface temperature (SST) retrieval methods first linearise the inverse problem by using brightness 
temperatures instead of radiances. Having taking this step, SST retrievals generally take the form of 
weighted linear combinations of two or more BTs. Different “algorithms” are different ways of 
determining the weights by means that are informed by the retrieval context to different degrees. 
 
The method addressed here is optimal estimation using a reduced state vector of SST and total column 
water vapour [Merchant et al., 2008]. 

 
The equation for this optimal estimate are: 
 

𝒛" = 𝒛$ + (𝑲(𝑺*+,𝑲 + 𝑺$+,)+,𝑲(𝑺*+,(𝒚 − 𝑭) 
𝒛$ = 1

𝑥$
𝑤$4 

𝑭 = 𝑭(𝒙$) 

𝑲 =
𝜕𝑭
𝜕𝒛
|𝒛8  

Eq. 1   

 
where, in this specific case: the observation vector contains the observations of three thermal channels 

of SEVIRI, 𝒚 = 9
𝑦;.=
𝑦,>.;
𝑦,?.>

@, where the subscript indicates the nominal central wavelength of the channel; the 

forward model, 𝑭, used to simulate these channels is RTTOV v11.1; the prior state, 𝒙$, is (1) ECMWF 
forecast atmosphere (2) most recent OSTIA analysis SST (designated 𝑥$); the prior TCWV, 𝑤$, is the 
vertical integral of the water vapour density profile; A𝑭

AB
 is evaluated by assuming that the water vapour 

density changes by the same fraction at all levels. 
 
The present study changes none of the above formulation, but does address the error covariance 
assumptions. The initial formulation (based on Merchant et al., 2009) is that the observation error 
covariance (prior to recalculation) is modelled in terms of estimates of sensor noise an RTTOV 
uncertainty that increases at higher satellite zenith angles (in units K2): 

𝑺* = 9
0.11? 0 0
0 0.11? 0
0 0 0.15?

@ + 9
0.15?𝑠? 0 0

0 0.15?𝑠? 0
0 0 0.15?𝑠?

@ 

 

Eq. 2   

 
where 𝑠 = sec(𝜃) (atmospheric path length of observation relative to nadir view). The off-diagonal terms 
are zero, although error correlation is expected, as discussed further below.  
 
The initial formulation for the prior error covariance is that SST uncertainty is constant, whereas the 
uncertainty in TCWV itself depends on TCWV: 

 

𝑺$ = K𝑢M
? 0
0 𝑢B?

N 

𝑢M = O0.2	K, 	drifting	buoy
1.6	K, 	used	for	retrieval 

𝑢B = 0.5𝑤$(0.1 +
7.5 − 𝑤$
15 ) 

Eq. 3   
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for 𝑤$ in g cm-2. The uncertainty of 1.6 K used for retrieval is large for reasons discussed in Merchant et 
al., 2009.  Under diurnal warming conditions (rare but important) the observed skin SST will deviate 
from the prior (e.g., the OSTIA daily analysis product) by up to +5 K. A large value means the retrieval is 
able to capture these events 
 

4. Data Used 
 
In this study, we use a dataset of observations from SEVIRI matched to drifting buoy observations. The 
SEVIRI sensor in question is operational on the platform Meteosat-09, which was launched in 
December 2005. The buoy observations are within the field of view of the SEVIRI pixel and within 30 
minutes of the pixel acquisition time. The SEVIRI cloud screening, quality flagging (see below) and 
matching are done within the systems of the Ocean and Sea-Ice Satellite Applications Facility used to 
produce the SEVIRI SST data record OSI-250 (http://www.osi-saf.org/?q=content/msgseviri-sea-
surface-temperature-data-record). 
 
Two years of data are exploited: data from the year 2011 are used as a training set from which 
parameters are derived, and the quoted results are for the application of those parameters to data from 
the year 2012. There is no particular significance of these years, other than match-up data (MD) being 
accessible with an augmented set of contextual information (see below). 
 
There are 179,992 satellite-buoy matches in the 2011 (training) MD, and 165,574 in the 2012 (test) MD. 
The distribution of matches in 2011 is illustrated in Figure 1. In 2012 they are similarly distributed. The 
information in the dataset includes: the satellite (brightness temperature, BT) and drifting buoy (SST) 
measurements; a quality level (QL), derived in the OSI SAF processing system from a number of 
considerations such as proximity to flagged clouds; a numerical weather prediction (NWP) forecast of 
the atmospheric temperature and humidity profiles, needed as input for radiative transfer simulation of 
SEVIRI BTs; an operational estimate of the simulation bias relative to the satellite observations, 
estimated on timescales of 3 days on spatial scales of order 5 degrees from averages of simulation 
minus observation differences in night-time data; spatio-temporal geolocation information, such as 
satellite zenith angle; and the value of SST from the operational SST analysis, OSTIA, for the location 
and day. All the above fields are available within the operational processing system and can be 
exploited in near-real time.  
 
Since the recommended OSI-SAF SSTs comprise those from pixels with QL 4 and 5, only those pixels 
are included in the MD. Quality control flags for identifying outlier drifting-buoy temperatures have been 
applied, along with an additional filter for those temperatures relative to OSTIA, in which matches were 
rejected where the differences exceeds 2 K, which being around ten times the expected uncertainty in 
drifting buoy SST (e.g., Lean and Saunders, 2013).  
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Figure 1. Distribution of satellite-buoy matches used in this study. The locations shown are for 
2011, and other years are similar. Matched locations are coloured with the measured buoy sea sur-
face temperature. 
 
The radiative transfer model, RTTOV v11.2, was run for each match on the NWP profiles for the SEVIRI 
observation geometry, assuming cloud-free no-aerosol conditions. The SST used in the simulation was 
the drifting buoy SST minus a static adjustment for the ocean thermal skin effect of 0.17 K. The ocean 
skin effect is variable (e.g., Minnett et al., 2011;   Wong and Minnett, 2018), and for the present 
purpose, this adjustment is intended to correct for the mean skin effect to within an uncertainty of order 
0.1 K.  
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5. Methods: Derivation and Application 
5.1. Overview 

 
This paper describes methods for three steps of parameter estimation to improve optimal estimation 
results for SST. These steps are residual bias correction, simulation-observation error covariance 
estimation, and prior error covariance estimation. The parameters estimated in each step are contained 
in a vector of bias correction parameters, 𝜷, and two covariance matrices, 𝑺* and 𝑺$, respectively. The 
steps are undertaken sequentially, but are not independent, in that the current evaluation of each 
parameter set influences the evaluation of the others. The optimisation of the parameters is therefore 
iterative, and is sequenced as in Figure 2. This methods section presents each step, in turn: 
initialisation, bias correction estimation, simulation-observation error covariance estimation, prior error 
covariance estimation and testing for convergence. 
 

 
Figure 2. The sequence of estimation of three sets of parameters for optimal estimation. For 
symbols, see the main text. 
 

5.2. Initialisation 
 
The OSI-SAF ran an optimal estimation retrieval as an experimental processing chain on matches for 
2011 and 2012. The initial estimates of the OE parameters are the values of the parameters in that 
experimental chain. These have been specified over a period of time based on case studies, expert 
judgement, understanding of SEVIRI sensor characteristics, etc.  
 

The parameters 𝜷 consist of a single bias parameter per channel, such that 𝜷 = 9
𝛽;.=
𝛽,>.;
𝛽,?.>

@, using a 

notation analogous to that introduced above for 𝒚. While the biases are likely to be complex and 
variable, it is assumed in this study that much of that variability is captured by the bias adjustment 
procedure of the OSI SAF processing. Nonetheless, the SSTs from the experimental processing chain 
are biased overall, the absolute mean difference in validation exceeding a nominal target of 0.1 K. (The 
validation statistics are presented below in section §6.2, in the context of the improvements achieved by 
the present study.) The SST biases are found to be different between QL 4 and QL 5, therefore  𝜷 is 
estimated separately for each QL. However, the initial estimates for bias is 0 K for every channel at both 
QLs. 

! "#

"$converged?

start

stop
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The initial model for the observation-simulation error covariance is given by Eq. 4, 
 

𝑺* = f
𝑢;.=g

? 0 0
0 𝑢,>.;g ? 0
0 0 𝑢,?.>g ?

h + f
𝑢;.=i

?𝑠? 0 0
0 𝑢,>.;i ?𝑠? 0
0 0 𝑢,?.>i ?𝑠?

h 

 

Eq. 4   

where: 𝑠 = 	sec(𝜃) , where 𝜃 is the satellite zenith angle, and 𝑠 is therefore the length of the path of the 
ray from the surface to the satellite through the atmosphere relative to a nadir ray (hereafter referred to 
as the ‘path’); 𝑢jg is the uncertainty of observation for the channel centred on 𝜆 µm; and 𝑢ji is the 
corresponding simulation uncertainty. The numerical values are given in Table 1. Eq. 4 embodies some 
prior expectation about the error-covariance structure and has some limitations. The diagonal form of 
the observation error covariance expresses the expectation that this is dominated by radiometric noise, 
which his independent between the BTs of different channels. The values of the noise levels were 
estimated in Merchant et al (2013). The simulation uncertainties are modelled as being proportional to 
the path, expressing the understanding that the parameterisation of the RTTOV model is more accurate 
for a nadir path than at high zenith angles. A limitation of this formulation is that the simulation errors 
are assumed to be uncorrelated between channels. Since the parameterisation of the RTTOV model 
has the same form in all these channels, in fact it is reasonable to expect that the simulation errors 
have some degree of correlation. 
 

Table 1. Initial assumptions about observation-simulation uncertainties. 
 Observation Uncertainty / K Nadir simulation Uncertainty / K 

Channel 8.7 10.8 12.0 8.7 10.8 12.0 
Estimate 0.11 0.11 0.15 0.15 0.15 0.15 

 
The initial model for the prior error covariance is also diagonal: 
 

𝑺$ = K𝑢M
? 0
0 𝑢B?

N ; 𝑢B = 𝑎𝑤$ + 𝑏𝑤$? 

 

Eq. 5   

with the values 𝑢M = 1.6 K, 𝑎 = o
,>

 and 𝑏 = ,
o>

, for the prior total column water vapour, 𝑤$. The value of 
1.6 K exceeds the uncertainty in OSTIA or drifting buoys considerably, and will not be used in this 
study: it was chosen in the context of ensuring strong sensitivity to SST in the OE retrieval. Here, a 
realistic estimate for drifting buoy uncertainty, 0.2 K, is used initially. It is reasonable to expect that the 
SST and TCWV errors are uncorrelated. 
 

5.3. Estimating S-O bias 
 
The parameters 𝜷 are here defined such that adding them to the forward model corrects for bias. The 
concept for estimating the parameters is essentially to retrieve them, adding the parameters to the state 
vector. The is achieved iteratively, progressively refining the estimates of the parameters over many 
retrievals. The anchoring for the bias estimates is provided by the drifting buoy SSTs, which, on 
average, are assumed (after correcting for the skin effect) to give a well-calibrated reference. The SST 
prior for each retrieval is therefore the matched drifting buoy SST. The iterative approach is related to 
Kalman filtering (Rodgers, 2001) which may be used sequentially to estimate both the state and 
parameters of a model, but here there is no spatio-temporal continuity and there are some other 
differences (explained below). 
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The mathematical formulation of the 𝑖th retrieval is: 
 

𝒛qr = 𝒛q$ + s𝑲t(𝑺*+,𝑲t + 𝑺u+,v
+,𝑲t(𝑺*+,(𝒚 − 𝜷r+, − 𝑭) 

𝒛q$ = 1
𝒛$
𝜷r+,4 =

[𝑥x 𝑤$ 𝛽;.=,r+, 𝛽,>.;,r+, 𝛽,?.>,r+,]( 

𝑲t = K𝜕𝑭
𝜕𝒛
|𝒛8 𝑰oN 

𝑺u = K
𝑺$ 𝟎
𝟎 𝑺|}~�

N 

Eq. 6    

 
where: a tilde is used to mark vectors or matrices that are extended relative to the OE formulation of 
Eq. 1; the extended state vector, 𝒛q, consists of SST, TCWV and one bias parameter per channel; the 
prior value of the state vector with respect to SST is the drifting buoy temperature of the match minus 
0.17 K, the prior water vapour is the usual prior from NWP, and the three estimated bias parameters 
from the previous, (𝑖 − 1)th , retrieval; the extended tangent linear matrix, 𝑲t , consists of partial 
derivatives of BTs with respect to SST and TCWV, from RTTOV, plus the identity matrix, since the 
derivative of the corrected simulation of a BT with respect to its own bias parameter is 1; the prior error 
covariance is block diagonal, the upper-left block corresponding to the error covariance for 𝒛$, the 
lower-right block being the error covariance matrix of the estimated bias parameters (discussed further 
below); and the bias correction, 𝜷r+,, is applied within the simulation minus observation term. 
 
The bias parameters are forward model parameters whose estimates are improved successively over 
many retrieval instances. 𝑺|}~� is initialised as a diagonal matrix assuming small uncertainties (0.01 K 
for each bias parameter). After retrieval, the posterior error covariance estimate is 
  

𝑺�q} = s𝑲t(𝑺*+,𝑲t + 𝑺u+,v
+, = K

𝑨 𝑩
𝑪 𝑺|}

N Eq. 7    

 
which is a 5 x 5 matrix. The matrices 𝑨,	𝑩 and 𝑪 are not further used, but the lower-right 3 x 3 block 
acts as the prior error covariance of the bias parameters for the next retrieval, 𝑺|}. The main difference 
of the successive estimation described by these equations from Kalman filtering is the lack of 
connection between iterations other than via the bias parameters and their error covariance (the 
iteration index, 𝑖, in Eq. 6 is used only for terms that pass some information to the next retrieval). In 
Kalman filtering, the iterations are typically successive in time and space, and the full retrieved state 
vector for iteration 𝑖 acts as an initial estimate for 𝑖 + 1. Here, the next retrieval is randomly drawn from 
the MD and only the bias parameter estimates and their error covariance are relevant: this is why 𝑺u is 
block-diagonal, there being no correlation between the errors in the bias parameters and the prior 
errors in the next, randomly drawn, match. 
 
After a sufficient succession of iterations, the bias parameter estimates stabilise. The average across 
many stabilised estimates, 𝜷, serves as the parameter set passed to the next step, which is estimation 
of the simulation-observation error covariance. 
 

5.4. Estimating S-O error covariance 
 
For estimating the error covariance of the simulations relative to observations, we make use of a result 
from Desroziers et al. (2005; equation 3). Written in the retrieval nomenclature of this paper, the 
expression is: 
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𝐸[(𝒚 − 𝑭′(𝒛"))(𝒚 − 𝑭′(𝒛$))(] = 𝑺*  Eq. 8   

 
where 𝑭� = 𝑭 + 𝜷. Here, the retrieved vector, 𝒛", consists only of the state variables, SST and TCWV. 
For the purpose of parameter estimation, the prior SST is again that of the drifting buoy corrected for 
the skin effect. 𝐸[. ] signifies expectation. The expression therefore says that the outer product of two 
terms on average equals the simulation-observation error covariance we seek to estimate. The two 
terms are the difference between the observations and the simulation for the retrieved state, and the 
difference between the observations and the simulation for the prior state. Note that a covariance matrix 
is strictly symmetric, whereas the outer-product inside the expectation operator is not in general 
symmetric. To reverse Eq. 8 in order to provide an estimate for 𝑺*, three adaptations are made. First, 
we must estimate the expectation as the average of many instances. (Ideally, we would have many 
realisations of the same instance, but this is impossible.) Second, since Eq. 8 assumes the bias free 
case, and biases may not on any given evaluation have been fully removed, the expression should be 
re-zeroed. Third, we must force the result to be strictly symmetric. Using 〈. 〉 to indicate the arithmetic 
average over instances, we have: 
 

𝑺�* =
1
2
〈𝒅�g𝒅$g

( + 𝒅$g𝒅�g
(〉 

𝒅�g = 𝒚 − 𝑭�(𝒛") − 〈𝒚 − 𝑭�(𝒛")〉 
𝒅$g = 𝒚 − 𝑭�(𝒛$) − 〈𝒚 − 𝑭�(𝒛$)〉 

 

Eq. 9   

If we have prior reason to expect that 𝑺* is a function of a quantity we have access to, Eq. 9 
can be applied to data stratified with respect to that quantity, to uncover the dependence.  
  

5.5. Estimating the prior error covariance 
 
Desroziers et al. (2005) also derived the equivalent of the following expression (their eq. 2): 
 

𝐸[(𝑭′(𝒛") − 𝑭�(𝒛$))(𝒚 − 𝑭′(𝒛$))(] = 𝑲𝑺$𝑲( Eq. 10   
 
Note that, even if 𝑺$ were constant (which we have prior reason to doubt with respect to the TCWV 
error), 𝑲 is variable between matches. We have an estimate of 𝑲 from the forward model for each 
match. While in data assimilation,	𝑲𝑺$𝑲( is often assessed “in observation space”, here we wish to 
extract an estimate for 𝑺$. We wish to use an average of many instances to evaluate the expectation, 
and to cast the equation in a re-zeroed form that forces a symmetric answer. Combining these 
requirements, we obtain: 
 

𝑺�$ =
1
2
〈(𝑲(𝑲)+,𝑲(	s𝒅$�𝒅$g

( + 𝒅$g𝒅$�
(v𝑲(𝑲(𝑲)+,〉 

𝒅$� = 𝑭�(𝒛") − 𝑭�(𝒛$) − 〈𝑭′(𝒛") − 𝑭�(𝒛$)〉 

Eq. 11   

 
Again, this can be applied to data stratified with respect to a quantity to uncover the dependence on 
that quantity, the quantity of relevance here being TCWV. (The SST uncertainty is considered more 
likely to be constant.)  
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5.6. Consistency and convergence 
 
A further relationship, from Andersson (2003), can be calculated as a metric of self-consistency. If the 
error covariance matrices are representative then  
 

〈𝑺�* + 𝑲𝑺�$𝑲(〉+,〈𝒅$g𝒅$g
(〉 − 𝑰 ≈ 𝟎 Eq. 12   

 
where 𝟎 is a square matrix of zeros. The element-wise sum of squares of the expression on the left-
hand side is a measure of the inconsistency of the error covariance assumptions: as the value 
decreases, inconsistency decreases and the assumptions are more consistent with the data. This 
metric can be evaluated once per cycle of estimation (Figure 1) to verify that consistency is improving 
(i.e., that the inconsistency metric is decreasing). 
 
As a convergence criterion, given the primary aim of SST retrieval in this study, we compared the 
retrieved SSTs for a given cycle to the retrieved SSTs from the previous cycle. If the retrieved SSTs 
have changed little, then further cycles serve no practical purpose. this means that the minimum 
number of cycles of estimation is two. Specifically, we take the estimation process as having converged 
if the standard deviation of the differences is less than 0.015 K (1.5 cK). 
 

5.7. Decomposing covariance matrices 
 
Numerical values in covariance matrices are relatively difficult to interpret. It is more intuitive to look at 
the values uncertainty for different terms together with the correlation coefficients of the errors between 
terms. Results for covariance matrices in this paper are therefore decomposed into constituent parts, as 
follows: 
 

𝑺 = 𝑼𝑹𝑼 Eq. 13   
where 𝑼 is diagonal and holds the uncertainty values, and 𝑹 contains correlation coefficients (with 1s 
on the diagonal). The diagonal values of 𝑼 and the lower-left triangle of 𝑹 are then presented in tabular 
form for ease of reading and interpretation. (The first instance is in §Table 2.) 
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6. Results 
 

6.1. Parameter estimation 
 
The parameter estimates from four estimation cycles are shown in Table 2.  
 

Table 2. Estimated bias and covariance parameters for optimal estimation. 
Parameter 
/ units 

Applicability Ini-
tial 

Cycle 
1 

Cycle 
2 

Cycle 
3 

Cycle 
4 

Bias / cK 
 

QL = 4 8.7 µm 0 1 2 2 2 
10.8 µm 0 1 1 1 1 
12.0 µm 0 5 5 5 5 

QL = 5 8.7 µm 0 7 8 7 7 
10.8 µm 0 7 8 8 8 
12.0 µm 0 10 11 11 11 

S-O uncer-
tainty / cK 

Near nadir 
(𝑠 = 1.1) 

8.7 µm 20 23 25 25 25 
10.8 µm 20 12 12 12 12 
12.0 µm 22 10 11 12 13 

Slant path 
(𝑠 = 2.1) 

8.7 µm 33 28 30 31 32 
10.8 µm 33 19 21 22 23 
12.0 µm 35 23 26 29 31 

S-O error 
correlation 

Near nadir 
(𝑠 = 1.13) 

8.7 µm vs 10.8 µm 0.00 0.32 0.44 0.49 0.51 
10.8 µm vs 12.0 µm 0.00 -0.38 -0.31 -0.21 -0.11 
12.0 µm cs 8.7 µm 0.00 -0.18 0.08 0.19 0.25 

Slant path 
(𝑠 = 2.08) 

8.7 µm vs 10.8 µm 0.00 0.70 0.78 0.81 0.82 
10.8 µm vs 12.0 µm 0.00 0.48 0.61 0.68 0.72 
12.0 µm vs 8.7 µm 0.00 0.41 0.57 0.62 0.65 

Buoy SST 
uncertainty 
/ cK 

Low TCWV (𝑤 = 1.4 g cm-2) 20 23 27 29 31 
High TCWV (𝑤 = 4.0 g cm-2) 20 21 23 23 23 

Prior TCWV 
uncertainty 
/ g cm-2 

Low TCWV (𝑤 = 1.4 g cm-2) 0.35 0.27 0.24 0.25 0.21 
High TCWV (𝑤 = 4.0 g cm-2) 0.67 0.36 0.36 0.35 0.35 

SST-TCWV 
error corre-
lation 

Low TCWV (𝑤 = 1.4 g cm-2) 0.0 -0.13 -0.16 -0.15 -0.15 
High TCWV (𝑤 = 4.0 g cm-2) 0.0 0.04 0.07 0.09 0.11 

Inconsistency metric 2.16 0.49 0.19 0.09 0.05 
SD of difference in SST from previous cycle / cK n/a 41 2.4 1.7 1.4 

 
The bias parameters for each channel are estimated using the method described in §5.3, initialised for 
the first cycle as described in §5.2. The parameter estimates stabilise after ~30,000 iterations in the first 
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estimation cycle (Figure 3) and change little in subsequent cycles. As expected, given that the 
operational bias adjustments are already applied, the retrieved bias parameters are small, of order 0.1 
K or less. There is a difference between the results by quality level, with the QL = 4 observations being 
0.05 K to 0.07 K cooler than the QL = 5 observations. This is consistent with the QL = 4 pixels being 
more prone to minor amounts of cloud contamination, in line with the intention of the quality flagging 
algorithm.  
 
 

a. b.  
Figure 3. Stabilisation of bias parameters from first cycle of estimation for (a.) quality level 5 
and (b.) quality level 4 matches. 
 
 
After the bias estimation in each cycle, new optimal estimation retrievals are made applying those new 
bias correction estimates per quality level. From these OE results, as described in §5.4, a set of values 
𝒅$g  and 𝒅�g are obtained and used in Eq. 9 to obtain an estimate for the simulation-observation error 
covariance matrix. Given that some dependence on path is expected, the error covariance matrix is 
estimated from the data stratified into quartiles of 𝑠. The results for the first and fourth quartile are 
tabulated in Table 2, and the expectation that the uncertainty increases with increasing path (higher 
satellite zenith angles) is confirmed. Not previously expected is the result that the uncertainty in the 8.7 
µm channel is significantly greater than in the 10.8 and 12.0 µm channels, meaning that the addition of 
the 8.7 µm contains less additional information content with respect to SST than previously thought. 
Further, the uncertainties for the 10.8 and 12.0 µm channels are less than the initial estimate, which 
may reflect improvements in forward modelling of those channels, since those initial estimates were 
inferred (by ad hoc means) in relation to an earlier RTTOV version. 
 
Near nadir, the correlation in error inferred between the 10.8 and 12.0 µm channels is small. This would 
be consistent with the sensor noise contributing most of the uncertainty in simulation-minus-observation 
in near-nadir cases. For the quartile of highest satellite zenith angle, the inter-channel correlation is 
between 0.65 and 0.82, depending on which channel pair is considered. This increase in inferred error 
correlation cannot be a sensor effect: the noise sources in the instrument doesn’t “know” what the 
satellite zenith angle is. The increase in error correlation is consistent with increasing importance 
(relative to sensor noise) of forward model uncertainty for more slanted paths through the atmosphere. 
 
RTTOV simulation errors are expected to be correlated between channels, since the same structure of 
parameterisation is used for different channels. To examine the plausibility of the inferred correlations, 
we obtained (P. Brunel, pers. comm.) data from simulations used in the training of the RTTOV v11 
parameterisations. Differences between RTTOV channel-integrated BTs (i.e., corresponding to the 
simulations here) and spectrally resolved calculations for the same conditions are, as anticipated, 
correlated, and the correlations for a path of 2 are comparable to those inferred by the parameter 
estimation process (Table 2). Moreover, being a difference between simulations, the error correlation for 
simulations of the real atmosphere may be higher than these correlations of simulation differences. The 
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parameter estimation results are therefore plausible.  
 
Table 3. Correlation coefficients between RTTOV channel-integrated and spectrally resolved 

simulations of brightness temperature (RTTOV parameterisation training set). 
 

Path 8.7 µm vs. 10.8 µm 12.0 µm vs 10.8 µm 8.7 µm vs 12.0 µm 
1 (0o) 0.30 0.80 0.71 
2 (60o) 0.54 0.71 0.79 

 
The uncertainty in the buoy SST is also updated by the estimation procedure. Buoy SST measurement 
uncertainty is expected to be 0.2 K. The uncertainty relevant here is the uncertainty in using the buoy 
SST as an estimate of the average skin temperature over a satellite pixel. In this context, the variability 
in the depth-skin relationship (since we use here just a mean skin effect adjustment) and the point-to-
pixel variability both add to the intrinsic measurement uncertainty of the drifting buoy. The prior error 
covariance matrix is modelled here as a function of total column water vapour, although for the buoy 
SST uncertainty, no direct dependence is expected. However, for the quartile of lowest TCWV, the 
parameter estimation process converges on a larger uncertainty estimate, 0.31 K. Since the lower 
TCWVs all occur towards the limb of the satellite disk, it may be that this really reflects a growth in 
point-to-pixel variability as the satellite field of view increases. For the other quartiles, the apparent buoy 
uncertainty is 0.22 K to 0.24 K, in line with expectations. It is not expected that the buoy SST errors 
should correlate with NWP TCWV, and indeed the inferred correlation coefficients are close to zero. 
 
The initial estimates of uncertainty in TCWV are 25% and 17% at 1.4 and 4.0 g cm-2 respectively, and 
these are markedly greater than the new estimates, which correspond to 15% and 9% respectively. The 
new estimates are plausible and we regard them as having a more justifiable methodological basis. 
 
Lastly, we note that the inconsistency metric does reduce (consistency improves) on each iteration of 
the parameter estimation process. The difference between retrieved SSTs using each new set of 
parameters also decreases each time, and falls below the convergence criterion of 1.5 cK when 
comparing the results of the third and fourth cycles.  
 

6.2. Impact on OE SST retrieval 
 
To examine the impact of the new OE parameter estimates on retrieved SSTs, the test MD is used, 
which contains 165574 matches from 2012. Applying parameters estimated for 2011 to 2012 makes the 
assumption that the sensor biases and noise levels do not change significantly over the course of a 
year. For a fair test, it is necessary to use a prior SST that is independent of drifting buoys, and so a 
daily climatological SST is used based on the years 1982 to 2010 inclusive. The climatology is that 
Merchant et al. (2019), which is the v2 satellite-based dataset from the ESA climate change initiative for 
SST. SEVIRI is not used in creating this dataset.  Being a climatology, inter-annual variability is the 
dominant source of uncertainty in this prior, and the prior uncertainty is estimated to be 0.85 K for the 
area within the SEVIRI disk. Zero correlation with NWP TCWV is expected. The prior error covariance 
matrix is modified accordingly for this test, while all other OE parameters are unchanged, since these 
are not dependent on what prior SST is used. The results, along with other results for comparison, are 
shown in Table 4 (as “Tuned OE” results). 
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Table 4. Impact on validation statistics. 
Retrieval Stra-

tum 
N Mean / 

cK 
SD / 
cK 

Median / 
cK 

RSD / 
cK 

〈𝒅𝒙�/𝒅𝒙〉 

Climatol-
ogy   
(Prior) 

All 165574 -35 81 -28 74 - 

Opera-
tional 

All 165574 -3 50 0 43 - 
QL = 5 87244 1 47 4 40 - 
QL = 4 78330 -9 53 -5 44 - 

Initial OE All 165574 -11 51 -7 43 65% 
QL = 5 87244 -9 48 -5 41 66% 
QL = 4 78330 -14 53 -9 45 64% 

Tuned OE All 165574 -7 50 -3 41 80% 
QL = 5 87244 -6 46 -3 39 81% 
QL = 4 78330 -8 53 -3 44 78% 

Tuned OE 
OSTIA prior 

All 165574 -1 44 1 38 80% 
QL = 5 87244 0 42 1 36 81% 
QL = 4 78330 -2 48 1 40 78% 

 
The climatology is in general cooler than the ocean in 2012, reflecting the tendency to warmer SST 
over time. The root-mean square error in the climatology is 0.85 K and this was used as the prior 
uncertainty for both the “initial” and “tuned” OE retrievals.  
 
For comparison, the operational retrieval results are first shown. The operational retrieval is based on 
retrieval coefficients derived by regressing bias-corrected BTs to drifting buoys, plus an additional step 
of adjustment based on a simulation of the retrieval error (Leborgne, et al, 2011). It therefore combines 
the empirical basis of regression coefficients with additional information from forward simulation, the 
latter step providing the extra information that OE also contributes (relative to a purely regression-based 
retrieval). The results are very good, with a standard deviation relative to buoys of 0.50 K overall (QL 4 
and 5 combined). 
 
OE with only the operational bias correction and the initial error covariance assumptions also performs 
well. This reflects the facts that the operational bias correction addresses most of the observation 
biases efficiently, and that the error covariance assumptions were based on considerable trial and error. 
The results are more negatively biased than the operational retrieval, by almost 0.1 K, but otherwise are 
comparable to the operational results. 
 
The newly tuned OE is marginally less biased (-0.07 K relative to buoys on average) and gives 
marginally smaller standard deviations of SST than both the operational and initial OE formulation, most 
of the improvement being from the QL = 5 data. Relative to the initial OE, the retrieval sensitivity is also 
usefully greater, at around 80%. (The sensitivity quantifies the amount of change in retrieved SST that 
is obtained per unit change in the true SST. Since the applications of SEVIRI include quantifying the 
diurnal cycle, it is preferable to have sensitivity close to 100% to ensure the diurnal cycle is well 
captured It can be easy to improve validation statistics while sacrificing sensitivity (e.g., Petrenko et al., 
2014), so the fact that the parameter estimation process has improved the statistics and the sensitivity 
simultaneously is very positive. 
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a.  b.  
Figure 4. Distribution of OE SST minus buoy SST differences against latitude for (a.) untuned 
and (b.) tuned OE. 
 
Despite not being parameterised in terms of latitude, the tuned OE results show somewhat less 
latitudinal structure (Figure 4 and §10.3). 
 
Results for one further case are also shown. Operationally, SST retrieval would not typically use a 
climatology as first guess because more precise prior information is available in the form of SST 
analysis products that are produced in near real time. OE using OSTIA as a prior SST is shown. So as 
not to constrain the result too closely, the prior uncertainty is kept the same as for the OE retrievals 
started from the climatological prior. The improved prior leads to a marked reduction in retrieval errors 
compared to all the other retrieval formulations. Note that the statistics are likely to be somewhat 
optimistic because OSTIA assimilates most of the same buoy SSTs as used here for validation. 

7. Discussion  
 
The results in Table 4 show that, given the operational bias correction, OE initialised from climatology is 
comparable to the operational retrieval. The parameter retrieval process leads improved retrievals with 
less bias, smaller standard deviation when validated on independent data, and improved retrieval 
sensitivity. 
 
Although real, the gains are fairly modest (because there had already been considerable ad hoc tuning 
behind the initial formulation).  
 
The study demonstrates other useful results beyond improvements in SST retrieval and opens up 
several avenues for further work. 
 
First, the study demonstrates an objective method for exploiting the MD that is available operationally in 
order to address biases of observations relative to simulations. The present bias correction is shown to 
be efficient, but nonetheless leaves a residual level of bias that degrades the initial OE results, leading 
to negative bias in excess of 0.1 K. This study shows that a residual bias can be retrieved using the MD 
as an anchor, which enables OE retrievals that are less biased. The concept of retrieving the bias over 
many retrievals is a powerful one, and could be exploited to supersede rather than supplement the 
operational bias correction method (which is somewhat ad hoc).  
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8. Conclusions and recommendations 
 
1. Simulation-observation bias estimation is crucial to SST retrieval quality from SEVIRI. A method 

of bias parameter estimation, loosely based on Kalman filtering, has been demonstrated and 
may offer benefits relative to the currently operational method. It has been demonstrated rel-
ative to a in situ MD, but correction of bias relative to other anchors, such as SLSTR, could also 
be explored. It is recommended that the relevance of the method for bias parameter estima-
tion demonstrated simply here is explored as the focus of a future study. 

2. The uncertainty of simulation-observation differences has been estimated for the 8.7, 10.8 and 
12.0 µm channels. The results suggest that the uncertainties are greater for the 8.7 µm chan-
nel, which may be noisier than previously understood.  

3. Significant error correlation is inferred between the SEVIRI window channels, which materially 
affects multi-channel retrievals and their uncertainties. The error correlations inferred are 
compatible with the correlations between different simulations related to RTTOV parameteri-
sation. If known, such error correlation information can be directly used in the context of OE. It 
is recommended that more effort is put into quantifying error correlations in RTTOV simula-
tions, and communicating these to users. 

4. The estimate for buoy SST uncertainty is greater at low TCWV values, whereas at other re-
gimes of TCWV it was as expected. It is proposed that this is actually a pixel-size effect at high 
satellite zenith angles (where the low TCWV values are), but it is recommended that this be 
investigated. 

5. The uncertainty in total column water vapour has been re-estimated and is much less than 
previously assumed. The new information has a much sounder methodological basis. In the 
course of OE, TCWV is also retrieved, although not presently used. TCWV retrievals derived us-
ing the new uncertainty estimates are thereby put on a more rigorous basis, and their poten-
tial usefulness could be further explored. 

6. The parameter estimates based on 2011 work well when applied to data from 2012. This sug-
gests that the OE parameters change relatively slowly, which means they could be operation-
ally applied and routinely updated on a feasible cycle (e.g., monthly incremental updates). 

7. Various aspects have not been addressed in this short study. It is recommended that these be 
pursued to build on the work: 

a. The error covariances have been derived on strata of variables already known to be 
useful (atmospheric path and prior TCWV). Now that a systematic means of estimating 
error covariances is available, it is recommended that alternatives be explored that 
may enable them to be better optimised. For example:  

i. the simulation-observation error covariances almost certainly should be in-
creased under desert-dust conditions 

ii. the water vapour path may better predict RTTOV errors  
b. Only a global bias correction per quality level (on top of the operational bias correction) 

is estimated here. It is very likely that seasonal-regional residual biases are present that 
would be well estimated using the method on those, or perhaps even shorter, scales. 
This could unlock significant progress in reducing SST uncertainty. 
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10. Appendices 
 
 

10.1. Based on 2011 MD 
 
The values of inferred parameters for all quartiles are tabulated below for reference. The values have 
been saved in netcdf files and provided to the OSI-SAF. 
 
netcdf parameter_estimates_2011_4 { 
dimensions: 
 nchan = 3 ; 
 ntcwv = 4 ; 
 npath = 4 ; 
 nzvar = 2 ; 
 nql = 2 ; 
variables: 
 float chan(nchan) ; 
  chan:units = "micrometres" ; 
  chan:long_name = "channel central wavelength" ; 
  chan:standard_name = "wavelength" ; 
 float tcwv(ntcwv) ; 
  tcwv:units = "g / cm^2" ; 
  tcwv:long_name = "reference values of total column water vapour 
for covariance model" ; 
  tcwv:standard_name = "tcwv" ; 
 float path(npath) ; 
  path:units = "g / cm^2" ; 
  path:long_name = "reference values of secant of satellite zenith 
angle" ; 
  path:standard_name = "sectheta" ; 
 float Sa(nzvar, nzvar, ntcwv) ; 
  Sa:units = "mixed" ; 
  Sa:long_name = "prior error covariance parameters by tcwv" ; 
  Sa:comment = "2 x 2 x 4: [[usst^2], [usst*utcw]], [[usst*utcw], 
[utcw^2]] x tcwv" ; 
  Sa:standard_name = "S_a" ; 
 float Se(nchan, nchan, npath) ; 
  Se:units = "K^2" ; 
  Se:long_name = "sim-obs error covariance parameters by path" ; 
  Se:standard_name = "S_e" ; 
  Se:comment = "3 x 2 = channels x quality level [QL4, QL5]" ; 
 float beta(nchan, nql) ; 
  beta:units = "K" ; 
  beta:long_name = "bias correction parameters" ; 
  beta:standard_name = "bc" ; 
data: 
 
 chan = 8.7, 10.8, 12 ; 
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 tcwv = 1.418967, 2.099057, 2.834442, 3.970806 ; 
 
 path = 1.130943, 1.41805, 1.680825, 2.087907 ; 
 
 Sa = 
  0.09504894, 0.05061651, 0.06532113, 0.07487753, 
  -0.00974864, -0.01551126, 0.0005782479, 0.01040876, 
  -0.009748637, -0.01551126, 0.0005782468, 0.01040876, 
  0.04598793, 0.06651784, 0.09481356, 0.1247599 ; 
 
 Se = 
  0.06448417, 0.03926921, 0.04875163, 0.1012976, 
  0.01517007, 0.01370855, 0.02680052, 0.06088078, 
  0.00799631, 0.0143879, 0.03003672, 0.06407324, 
  0.01517007, 0.01370855, 0.02680052, 0.06088078, 
  0.01398011, 0.01130527, 0.02314225, 0.05495903, 
  -0.001703438, 0.003974373, 0.01991108, 0.05204362, 
  0.00799631, 0.0143879, 0.03003672, 0.06407324, 
  -0.001703438, 0.003974373, 0.01991108, 0.05204362, 
  0.0162547, 0.02864375, 0.05505618, 0.09563842 ; 
 
 beta = 
  0.01846741, 0.07460082, 
  0.01021159, 0.08039254, 
  0.04914828, 0.1118343 ; 
} 
 

10.2. Based on 2012 MD 
The values of inferred parameters for all quartiles are tabulated below for reference. The values have 
been saved in netcdf files and provided to the OSI-SAF. 
 
netcdf parameter_estimates_2012_4 { 
dimensions: 
 nchan = 3 ; 
 ntcwv = 4 ; 
 npath = 4 ; 
 nzvar = 2 ; 
 nql = 2 ; 
variables: 
 float chan(nchan) ; 
  chan:units = "micrometres" ; 
  chan:long_name = "channel central wavelength" ; 
  chan:standard_name = "wavelength" ; 
 float tcwv(ntcwv) ; 
  tcwv:units = "g / cm^2" ; 
  tcwv:long_name = "reference values of total column water vapour 
for covariance model" ; 
  tcwv:standard_name = "tcwv" ; 
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 float path(npath) ; 
  path:units = "g / cm^2" ; 
  path:long_name = "reference values of secant of satellite zenith 
angle" ; 
  path:standard_name = "sectheta" ; 
 float Sa(nzvar, nzvar, ntcwv) ; 
  Sa:units = "mixed" ; 
  Sa:long_name = "prior error covariance parameters by tcwv" ; 
  Sa:comment = "2 x 2 x 4: [[usst^2], [usst*utcw]], [[usst*utcw], 
[utcw^2]] x tcwv" ; 
  Sa:standard_name = "S_a" ; 
 float Se(nchan, nchan, npath) ; 
  Se:units = "K^2" ; 
  Se:long_name = "sim-obs error covariance parameters by path" ; 
  Se:standard_name = "S_e" ; 
  Se:comment = "3 x 2 = channels x quality level [QL4, QL5]" ; 
 float beta(nchan, nql) ; 
  beta:units = "K" ; 
  beta:long_name = "bias correction parameters" ; 
  beta:standard_name = "bc" ; 
data: 
 
 chan = 8.7, 10.8, 12 ; 
 
 tcwv = 1.431208, 2.105799, 2.736929, 3.776994 ; 
 
 path = 1.13312, 1.41706, 1.60308, 2.011619 ; 
 
 Sa = 
  0.08361942, 0.05516465, 0.05696054, 0.06125894, 
  -0.01075144, -0.02143178, -0.01739152, -0.003751766, 
  -0.01075149, -0.02143179, -0.01739152, -0.003751766, 
  0.05654944, 0.07301553, 0.08530219, 0.1154286 ; 
 
 Se = 
  0.03990133, 0.03364344, 0.0401932, 0.06417356, 
  0.02176738, 0.01389279, 0.0195967, 0.02921116, 
  0.00973857, 0.01560902, 0.02333472, 0.03751936, 
  0.02176738, 0.01389279, 0.0195967, 0.02921116, 
  0.01971504, 0.01144957, 0.01818538, 0.02649216, 
  -0.001346814, 0.005051419, 0.01486389, 0.02982025, 
  0.00973857, 0.01560902, 0.02333472, 0.03751936, 
  -0.001346814, 0.005051419, 0.01486389, 0.02982025, 
  0.01767958, 0.04090315, 0.0560001, 0.08284944 ; 
 
 beta = 
  0.02510169, 0.07790193, 
  0.02096556, 0.0863958, 
  0.06765884, 0.1096381 ; 
} 
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10.3. OE validation statistics stratified by latitude 
 
Summary statistics of Tuned retrieval - Buoy / K, stratified by: Latitude 
N        Mean     SD       Median   RSD / K 
Stratum:  -50  to  -30 
30932    -0.047   0.495    -0.015   0.408    
Stratum:  -30  to  -10 
35171    0.002    0.393    0.029    0.347    
Stratum:  -10  to  10 
23242    -0.036   0.435    -0.002   0.362    
Stratum:  10  to  30 
34956    -0.213   0.595    -0.138   0.498    
Stratum:  30  to  50 
37994    -0.044   0.500    -0.030   0.441 
 
Summary statistics of Untuned retrieval - Buoy / K, stratified by: Latitude 
N        Mean     SD       Median   RSD / K 
Stratum:  -50  to  -30 
30932    -0.081   0.522    -0.046   0.429    
Stratum:  -30  to  -10 
35171    -0.003   0.389    0.030    0.340    
Stratum:  -10  to  10 
23242    -0.052   0.421    -0.008   0.341    
Stratum:  10  to  30 
34956    -0.302   0.579    -0.252   0.513    
Stratum:  30  to  50 
37994    -0.093   0.516    -0.084   0.465 


